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Abstract—This article deals with the study of the description of 

phenomena occurring in high frequency domain in two-wires 

Unshielded and Shielded Energy Cables. First, the finite element 

model of the cable is presented for calculating the lumped-

parameters which depend on the frequency range, especially for 

the resistance with the phenomenon of skin effect and proximity 

effect. Then the Transmission Line Method (TLM) is used to 

determine the impedance of the cable according to the frequency. 

The numerical results are compared with the experimental 

results. 

Keywords- Finite element method; frequency-domain analysis; 

power cable; transmission line models; skin and proximity effect.  

I. INTRODUCTION 

Modeling cables and power lines are studied over several 

decades [1]. Currently, more isolated generators or generating 

farms are connected to power networks. These new sources of 

electric energy are connected to the network by means of  

cables and  power electronic converters [2], [3]. To avoid 

disruptions cause by negative resonance frequencies it is 

necessary to precisely model the behavior of the cable. 

However, the modeling of energy cables presents some 

difficulties. This is due to several factors. The properties of 

materials, thicknesses of insulation and shielding are not fully 

known. In addition, electrical wires and frame are twisted 

(sometimes in opposite sense). These physical parameters are 

insufficient to model a cable in the frequency domain, it is 

necessary to take into account the electromagnetic phenomena 

such that the skin effect and the proximity effects. Software, 

such as EMTP, offers models of cables based on an analytical 

approach to determine the parameters (lumped or distributed) 

of cable [4]. Usually with this approach, the skin and the 

proximity effects are often idealized.  

To correctly model these both effects depending highly on 

the characteristics of the materials and also on the geometry, 

we propose to use the Finite Element Method (FEM) [5], [6], 

[7]. The number of simulations by finite element method will 

vary depending on the number of present electrical conductors 

in the cable. Each simulation will provide an energy value that 

will allow us to determine the lumped parameter (capacity, 

resistance and inductance) matrices. In addition, these 

simulations will be performed for several frequencies to 

capture the evolution of the skin and proximity effects. The 

design model is carried out by Salome platform, the 

computation by code_Carmel3D (co developed by laboratory 

L2EP and EDF R&D) [8], [9].  

Once the lumped parameter matrices are obtained, the 

modal decomposition method is used to extend the model of 

cable to higher frequencies. To validate the proposed method a 

comparison is made between simulation results and 

measurements extracted from [10].  A particular attention is 

paid on evolution according to frequency of the impedance of 

the cable in open-circuit and short-circuit operation modes. 

II. MẸTHODS 

In this section, the formulations used to calculate the 
lumped parameters are introduced. Based on energy method, 
the lumped parameters are obtained from the finite element 
model.  It is also shown how impedances matrices are obtained 
from all performed simulations. The Transmission Line 
Method (TLM) and modal decomposition are also briefly 
presented. Finally, the method used to reduce matrices [R] [L] 
[C] is discussed, by presenting the matrix of connections that 
allow calculating impedances in the same configurations (short 
circuit, open circuit, common mode and differential mode) as 
cable impedance measurement 

A. Formulations and Finite Element Method  

In this study, the value of the capacitance matrix is 
supposed to be not frequency dependent. Thus, the capacitance 
between the wires is calculated using the electric scalar 
potential formulation. However, for the resistance and 
inductance matrices which vary with the frequency, the two 
magnetoharmonic potential formulations are used.         

Electrostatic case 

To determine the capacitance between the conductors we 
must be solve an electrostatic problem free of space charges. 
The computation can be carried out with the electric scalar 

potential  formulation which can be written as  

This work is realized under the MEDEE project with financial Assistance 
of European Regional Development Fund and the region Nord-Pas-de-Calais, 

supported by Company Electricity of France (EDF). 

 

IX Symposium Industrial Electronics INDEL 2012, Banja Luka, November 01�03, 2012

152



 

 

 divgrad - divgradS 

with  the electric permittivity and I, S  the electric scalar 
potential unknown and source. The boundary condition Exn =0 

on the border ΓE is prescribed by imposing (gradS) × n = 0 

and (gradI) × n = 0 on the border ΓE.  

 

Figure 1.  Studied domain of electrostatic case 

Magnetoharmonic case 

As mentioned before, the objective is to determine the 
resistance and inductance matrices which depend on the skin 
effect and proximity effects.   After having determined the 
capacitance matrix of the cables made of a set of wires, the 
resistance and inductance matrices are calculated in function of 
the frequency by solving the magnetoharmonic formulations. 
Several formulations in terms of fields or potentials can be 

used. In our case the potential formulations A- and T-  are 
used in order to take into account naturally the coupling 
between the formulations adopted to model the conductive and 
non conductive parts.  

The magnetic vector potential A and the electric scalar 

potential  are defined such that the magnetic field B and 
vector A are related by B=curl A and the electric field E is 

equal to E=-jA-grad . Combining the previous equations 
with the Ampere law (curl H = J, H the magnetic field and J 

the current density) and the behavior laws (B=H and J=E 

with  the permeability and  the conductivity), the partial 
derivative equation to solve is:  

)(
1




gradAJcurlAcurl S  j  

where SJ is the current density like such account the source 

term. 

The boundary conditions prescribed on  B (B.n=0) and E 
(E×n=0) are imposed applying A×n=0 on ΓB and A×n=0 and  

=0  on ΓE  respectively. 

Another potential formulation can be introduced, the 
electric vector potential formulation T and the magnetic scalar 
potential formulation Ω are introduced such that: 

curlTcurlTJJJ SindS   

where TS is defined such that JS=curl TS and the unknown 
term Jind=curl T. 

Consequently the equation to solve on the conductive part 
is given by: 

)gradT(TcurlT)(curlTcurl SS Ωμ
σ

1
 j 

The boundary conditions of type J and H on the boundary 
ΓH by imposing T×n=0 on and Ω =0 on ΓH. 

The main interest to solve both formulations is to obtain 
two values of lumped parameters (one for each formulation). It 
is expected that obtained results will be close and the numerical 
errors introduced by the Finite Element method will be small. 
If it is not the case, the mesh should be refined.  

B. Determination of impedance matrices 

 Balance of energy – calculating C 

To explain the procedure for the determination of the 
capacitance matrix, the simplest case of non-shielded cable is 
presented (see Figure 2. ). On this type of cable, there are 3 
values of capacitance: one between wires and the other two 
connecting each wire to the ground. Three simulations will be   
performed to determine these three capacities.  

 

C12 

C10 C20 

1 2 

 

Figure 2.  Capacitances of two wires unshielded cable 

The electrical potential of the ground is still imposed to 
zero. The electrical potential of the conductors 1 and 2 are 
respectively denoted V1 and V2. Three configurations for the 
simulations are presented in table 1 and the expressions of the 
electrostatic energy potentials in function of the capacitances 
are given.   

TABLE I:  CONFIGURATION OF THE SIMULATIONS 

Configuration V1 (V) V2 (V) W(J) 

1 1 0 2
111

2
11210

2

1
)(

2

1
VCVCC   

2 0 1 2
222

2
21220

2

1
)(

2

1
VCVCC   

3 1 2 ))((
2

1 2
2112

2
220

2
110 VVCVCVC   

According to the equations given in the Table I, the 
capacitances C10, C20, C12 can be calculated from the values of 
the energy determined in the 3 configurations by solving a 
system of equations.  In the case of a cable with 3 wires, 6 
capacitances have to be calculated and therefore, 6 simulations 
to carry out. It can be noted that the self capacitance is the sum 
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of two capacities. Finally, for a general case, we can write 
capacity matrix [C] as: 

































nnnnn

n

n

n

CCCC

CCCC

CCCC

CCCC

C

...

...............

...

...

...

321

3333231

2232221

1131211

 

 Calculating R, L  

Considering again the two wires cable of the figure 1 and 
the same approach based on the calculation of the energy 
(Joule losses in the case of the resistance), the values of R and 
L matrices can be found. In general, if the wires are flown by 
an electric current, the Joule losses and the magnetic energy are 
expressed as follows:    












2112
2
222

2
111

122122
2
211

2
1

.
2

1
.

2

1

2..

IILILILW

RIIRIRIP

mag

Joules

 

where R11, R22, L11, L22 are respectively the self resistances and 
inductances; and R12, L12 are the mutual terms. 

To determine the couple of terms (R11, L11) and (R22; L22) it 
can be canceled respectively either I1 or I2. Finally (R12, L12) 
are obtained by prescribing I1 to 1 A and I2 to -1A. To take into 
account the evolution of the resistance according to the skin 
effect and the proximity effect, simulations must be carried out 
at several frequency values. It should be noted that self 
resistance values corresponds to Joule losses in the two wires 
when only one is supplied. Indeed, although the current I2 is 
zero (corresponding to an open circuit) the current density 
induced by proximity effect in the wire 2 is not zero and, as a 
result, generates losses in this wire.    

C. Transmission Line Model and Analysis Modal Approach 

In the previous sections, FEM was used to calculate R, L 
and C, or in other words, the impedance Z and the admittance 
Y of cable, according to frequency. In this section, the TLM 
method combined with modal decomposition is used to 
calculate the impedance of the cables in order to determine the 
resonance frequency of the cable. The steps of calculation are 
described in [1], [5], [6]. 

Figure 3.  Analysis of a small portion ∆x of one transmission line 

 Transmission Line Matrix Method  

Generally, two parallel long transmission lines are 
considered to introduce the method, a conductor wire and a 
reference wire. 

In the Figure 3. , Ua is the applied voltage at the input of the 
line; Ub is the output voltage at the end of the line. The 
equations are easily obtained starting with the relations 
between the currents and the voltages on a small portion ∆x of 
the line.   














)(.
i(x)d

)(.
dx

du(x)

xUY
dx

xIZ
 

The impedance Z and the admittance Y are found from the 

matrices R, L, C. To decouple the equations of the system (7), 

a modal decomposition must be carried out. The principle of 

modal analysis is the use of orthogonal matrices Qu and Qi 

suitable for transforming the real voltages and currents u, i to 

modal voltages and currents um, im. The modal voltages and 

currents are obtained by: 














iQi

uQu

im

um

1

1

  

The impedance and admittance matrices Zm and Ym 

become diagonal: 














uim

ium

QYQY

QZQZ

..

..
1

1

                                 (9) 

To calculate the matrices Qu and Qi, it is necessary to solve the 

eigenvalues problem defined by the following equations:  









)..().(

)..().(

mmuu

mmii

YZQQZY

ZYQQYZ

 

The system of equation (7) can be written under a modal 

form: 














(x).uY
dx

(x)di

(x).iZ
dx

(x)du

mm
m

mm
m

 

Each mode can be calculated independently. As a result, it 

can obtained a propagation constant and a characteristic 

impedance by mode that are denoted respectively m,k and Zch,k 

with k index corresponding to the k-th mode. Thus, a 

propagation matrix can be expressed for each mode .        

154



 

 

       

 































)0(

)0(

)cosh()sinh(/1

)sinh()cosh(

)(

)(

,

,

,,

,,

,

,

km

km

kmkmch,k

kmch,kkm

km

km

i

u

llZ

lZl

li

lu



       (12)

with l the conductor length. In the following, the propagation 
matrix Am is introduced. In order to calculate the real currents 
and voltages, propagation matrix can be written:  



















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





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
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in

in

in

uimuiout

out

i

u
A

i

u
QAQ

i

u 1                 (13)

with the transformation matrix Qui = diag{Qu,Qi}.       

 Connection  Matrix  

The matrix A provides a link between the input currents 

and voltages u
in

 and i
in

 and output voltages and currents u
out

 

and i
out

. To impose a unique solution, the connections between 

the cables should be taken into account. Consequently, these 

connections can be represented by equations linking currents 

and voltages which are added to the system (13).        

Take again, the two-wire cable of the Figure 4.  

 

Figure 4.  Equivalent circuit of unshielded cable 

The vectors of the input quantities X
in

 and the vector of 

quantities output X
out

 are defined such that: 

 






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
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 and 


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
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where X
out

=AX
in

. 

The source vectors S
in

, S
out

 corresponds to imposed initial 

conditions by the external circuit. In our case, only the voltage 

will be imposed on the input of the wire 1according to: 




















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S in  and
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















0

0

0

0

outS . 

It remains now to determine the connection matrix between 
the input wires and the output wires. The matrices C

in
, C

out
 will 

be determined based on the relation between current and 
voltage. 
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0
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C
in 

is determined from the relation between the current and 
voltages of the two input wires:  
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C
out

 is calculated based on the conditions of connection at 
the extremity of the cable then, two modes are considered: 

 Short circuit (K close) : 














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C
ii

VV  

 Open circuit (K open) : 




















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0000
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0000
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outoutout Cii  

Finally, the system to solve is not square but the solution is 
easily obtained by multiplying the system by its own 
transposed.   

SBB)B(XSBX t1-tinin 





























out

in
in

out

in

S

S
X

AC

C
 (18) 

III. VALIDATIONS AND APPLICATIONS 

A. – Two wires unshielded cable 

Figure 5.  Configuration of the two wires unshielded cable 
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Characteristic cable   

The cable is composed of two conductors coated with PVC, 
and the whole is placed in a rubber sheath. The geometrical 
characteristics and electrical parameters of the cable are 
presented in the Figure 5.  

Modeling of High Frequency (HF) behavior 

As the cable consists of two conductors, the electrical 
characteristics of this cable are presented by matrices R, L, and 
C of size 2 × 2. 

Figure 6.  Mesh and distribution of current at f = 500 kHz 

Figure 6. shows the mesh of this cable obtained with 
Salome Platform and code_Carmel3D and the distribution of 
the eddy current when two currents are imposed at 500 kHz in 
an opposite direction. The behavior HF of cable like the skin 
and proximity effects is modeled well. 

It can be noted that the mesh will be the same for all 
frequency range calculations. Therefore, attention is paid on 
the FE modeling of conductor domains in order to obtain a 
good representation of skin and proximity effects.  

 

 

Figure 7.  Evolutions of R, L of one wire according to frequency by two 

formulations 

Solving the problem magnetoharmonic by finite element 

method, values of resistance and inductance are obtained 

according to frequency. The computation is carried out for 

only 15 values of frequency. The results are obtained by using 

code_Carmel3D (two formulations). From Figure 7. , it can be 

seen that the results found by the computational approaches 

are quite similar. The difference is very small at 500kHz, and 

around 2% at 10MHz. The evolutions of R11, L11 according to 

frequency are obtained by interpolation method.  

The gap between these two formulations (resistive term) is 

higher increasing the frequency beyond 10MHz. 

Impedance computation 

From the matrices [R], [L] according to frequency and the 

matrix [C] the short-circuit and the open circuit impedance can 

be calculated by applying the method detailed in the previous 

section. 

It can be found that the resonance frequency of the open 
circuit mode corresponds to the anti-resonance frequency of 
the short circuit mode and vice versa. 

The results of this cable 1m length for a range [0.1 Hz, 100 

MHz] in both short circuit and open circuit modes are shown 

in Figure 8.  In this frequency range, two resonance 

frequencies are identified at 49 MHz and 98.5 MHz. A 

comparison between the simulation and the measurement 

results (extracted from [10]) is presented in table II. It can be 

observed that these results are in good agreement.  

Moreover with this approach it is easy to carry out a 

computation for another cable length. Using the same 

approach, the results for a cable of 10 m are shown in Figure 

9.  and the comparison with the experimental results is 

presented in Table III.  

 

Figure 8.   Impedance Modulus of the two wires unshielded cable 1m in 

length at SC and OC 
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TABLE II.   COMPARISON BETWEEN THE VALUES OF 

MEASURED AND CALCULATED RESONANT FREQUENCIES FOR A 
CABLE OF 1 m  

Resonance 

frequency 

(MHz) 

Short Circuit Open Circuit 

f01 f02 f01 f02 

Simulation 49.0 97.8 49.0 98.5 

Measurements 44.2 86.1 44.3 92.3 

Difference (%) 9.79 11.96 9.59 6.29 

 

 

Figure 9.  Impedance Modulus of the two wires unshielded cable of 10m 

length at SC and OC. 

 TABLE III.   COMPARISON BETWEEN THE VALUES OF 
MEASURED AND CALCULATED RESONANT FREQUENCIES FOR A 

CABLE OF 10 m  

Resonance 

frequency 

(MHz) 

Short Circuit Open Circuit 

f01 f02 f01 f02 

Simulation 4.91 9.89 4.91 9.90 

Measurements 3.95 7.96 3.95 7.96 

Difference (%) 19.55 19.51 19.55 19.59 

 

B. Two wires shielded cable 

Characteristic cable   

To reduce the ElectroMagnetic Compatibility (EMC) 
impact of this cable, a shielding layer of 0.2 mm thickness has 
been added. The shielded material is the same as the one of the 

wires (= 45.94 MS/m). The radius of conductor: 0.5 mm, of 
PVC coated the conductor: 1.25 mm and of external PVC: 2.9 
mm. 

Figure 10.  (on the right) depicts the distribution of the eddy 

currents when two currents are imposed through the wires at 

500 kHz in an opposite direction. The behavior HF is 

presented well as the skin and the proximity effects appear in 

the cable. 

 

 

 

Figure 10.  Characteristic of the two wires unshielded cable distribution of 

current at f = 500 kHz. 

Modeling of HF behavior 

As the cable consists of two conductors with a shielded 
layer then, the electrical characteristics of this cable are 
modeled using matrices R, L, C of size 3×3. 

 

Figure 11.  Evolution of R according to frequency 

 

Figure 12.  Evolution of L according to frequency 

Figure 11.  and Figure 12.  shows the evolution of the 

coefficients of the resistance and inductance matrices of the 

cable in a range [0.1; 10] MHz. The four self values of 

conductor (R11, L11) (R22, L22) and of the shield (R33, L33), 

mutual values between the two conductors (R12, L12) and 

between one conductor and the shield (R13, L13) are presented. 

It can be seen that the variation of the resistances is much 

more important than the variation of the inductances as 

expected by the theory for this kind of cable. 

On the other hand, solving the electrostatic problem by 

finite element method, the capacitance: C12 between two 

conductors, C10, C20 between the conductors and shield (table 
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IV) are obtained. In this study, the capacitances are assumed 

constant in function of frequency. 

TABLE IV.  VALUES OF CAPACITANCES OF THE TWO-WIRES 

SHIELDED CABLE 

Capacity Value 

C12 (pF/m) 17,4 

C10, C20 (pF/m) 136 

 

Impedance computation 

With this cable, two configuration modes can be 

considered: Common Mode and Differential Mode. For each 

mode, two configurations of circuit are studied: Short Circuit 

and Open Circuit.  

Common mode 

 

Figure 13.  Equivalent circuit of common mode transmission. 

In common mode, the current flows by the tow wires and 

returns through the shield (Figure 13. ). 

General matrix equation to solve (10) with the input 

unknowns, output unknowns and the sources:  
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is determined from the relation of current, voltage at the 
input of the line:  
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 is calculated based on the conditions at the end of the 
cable, then two cases are considered: 

 Short circuit (K close) 
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 Open circuit (K open)  
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From these matrices, equation (18) is solved. The results of 

this cable 10m length for a range [0.1; 10] MHz in both short 

circuit (SC) and open circuit (OC) are shown in Figure 14. In 

this frequency range two resonance frequencies are obtained: 

3.77 MHz and 7.60 MHz for SC; 3.79 MHz and 7.61 MHz for 

OC. 

 

Figure 14.  Modulus of impedance according to the frequency of the two wires 

shielded cable of 10m length – common mode - at SC and OC. 

In the table V the simulation and measurements results are 

compared. For this shielded cable, the results are always close.   

TABLE V. COMPARISON BETWEEN THE VALUES OF 

MEASURED AND CALCULATED RESONANT FREQUENCY FOR A 
CABLE OF 10 m  

Resonance 

frequency (MHz) 

Short Circuit Open Circuit 

f01 f02 f01 f02 

Simulation 3.89 7.78 3.89 7.78 

Measurements 4.40 9.14 4.40 8.85 

Difference (%)  11.59 14.88 11.59 12.09 
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Differential mode 

In this mode, the current flows through one wire and 

returns through the other. In this configuration, the shield 

doesn’t connect to the wires (Figure 15) 

 

Figure 15.  Equivalent circuit of differential mode transmission.  

The unknowns related to the input and output of the cables 

are the same as common mode case. However, the applied 

source matrix in this case is changed: 
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Based on the relation between the currents and the voltages 
at the input of the cable, it can be written:  

















































000000

010000

000000

000100

000000

000001

0
2

2

3

2

1

in

in

in

in

C

V

U
V

U
V

   

C
out

 is calculated according to the connections at the end of 
the cables, so two cases are considered: 

 Short circuit (K close) : 
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 Open circuit (K open) : 
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The results for a 10m length cable obtained for a frequency 

range [0.1; 10] MHz in both short circuit and open circuit 

configurations are shown in Figure 16. In this area, there are 

two resonance frequencies: 3.88 MHz and 7.75 MHz for SC; 

3.89 MHz and 7.76 MHz for OC.  

 

Figure 16.  Modulus of impedance according to the frequency of the two-wires 

shielded cable of 10m length – differential mode - at SC and OC 

It should be noted that the resonance frequencies obtained in 

differential mode are not the same as the resonance 

frequencies obtained in common mode. From table VI it can 

be seen that measurements and the simulation results agree 

well.  

TABLE VI.  COMPARISON BETWEEN THE VALUES OF 

MEASURED AND CALCULATED RESONANT FREQUENCY FOR THE 

TWO-WIRES SHIELDED CABLE OF 10m IN DIFFERENTIAL MODE  

Resonance 

frequency (MHz) 

Short Circuit Open Circuit 

f01 f02 f01 f02 

Simulation 3.92 7.87 3.92 7.87 

Measurements 4.31 8.83 4.25 8.83 

Difference (%)  9.05 10.87 7.76 10.87 

. 

IV. DISCUSSION AND CONCLUSIONS 

This paper presents a method applied to determine the 

impedances of cables according to the frequency. This method 

presents two advantages. First, the modeling of proximity 

effect in high frequency is well done. Second, the connection 

matrix is introduced. The impedance of other configuration of 

system according to frequency can be determined by changing 

this matrix. The calculations have been performed on two 

different cables: shielded and unshielded cable. In addition, on 
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the shielded cable, computations have been carried out taking 

into account the two operation modes: common mode and 

differential mode. Comparison of simulations with the 

measurements on the value of the frequency of resonance 

showed that the method gives good results. Moreover, this 

method can be applied to calculate the resonant frequency for 

other systems such that the three phase cable in the grid, the 

four wire HVDC cable. The presented models will be 

introduced in software EMTP. 
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