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Abstract— Comparative analysis of the data reusing nonlinear 

gradient descent and the normalized nonlinear gradient descent 

algorithms is provided. Starting point of the analysis is 

linearization of the model of data reusing iterations. Further, this 

allows application of the Z-transform and analysis of the 

algorithms in the complex domain. Notion of bandwidth of a 

neural nonlinear adaptive finite impulse response filter is 

introduced and relationship between pole placement of the 

algorithm and filter bandwidth is established. Effects of the 

output neuron nonlinearity and large bandwidth, on the filter 

performance, are analyzed. Requirement for a large filter 

bandwidth leads the output neuron to saturation, thus decreasing 

overall filter performance. Nonlinear system identification 

experiments performed on the benchmark nonlinear systems 

support the analysis.  
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I.  INTRODUCTION  

The least mean squares (LMS) algorithm, due to its 

robustness and simplicity, is the most frequently used 

algorithm in system identification and time series prediction 

tasks. However, when dealing with nonlinear processes, the 

LMS algorithm can show poor performance [1,2]. Its 

nonlinear counterpart, the nonlinear gradient descent (NGD) 

algorithm operated on a neural adaptive finite impulse 

response (FIR) filter, inherits simplicity and robustness of the 

LMS algorithm, while it copes with nonlinearities in the 

process [3]. The dynamics of the NGD algorithm, operated on 

the nonlinear FIR filter, is described by  

  ( ) ( ) ( )Ty k k k  x w  (1) 

 ( ) ( ) ( )e k d k y k   (2) 

 ( 1) ( ) ( ( )) ( ) ( )k k net k k e k    w w x  (3) 

where y(k) is the output of the filter, e(k) is the instantaneous 

error at the output, d(k) is some teaching (desired) signal, x(k) 

= [x1(k), x2(k), , xN(k)]
T
  is the input vector, w(k) = [w1(k), 

w2(k), , wN(k)]
T
  is the weight vector, () is nonlinear 

activation function at the output neuron, N is length of the 

weight vector and the input vector,  is the learning rate 

parameter, k is the discrete time instant, ()’ denotes the first 

derivative and ()
T
 denotes vector transpose. The aim of a 

neural adaptive filter, based on the NGD algorithm, is to 

achieve optimal weight values by iterating (1) – (3), thus 

minimising the cost function 2( ) 1 2 ( )J k e k . 

Regardless inherent nonlinearity, the NGD algorithm can 

exhibit slow convergence, especially when applied in non 

stationary environment [4]. Further, the algorithm specified by 

(1) – (3) is an a priori algorithm.  The fact, that the updated 

weight vector w(k+1) is available before the arrival of the next 

input vector x(k+1) and carries a new information on the 

system, provided by the latest measurement of the system 

output, y(k), can help to improve error estimation.  Thus, an a 

posterior output estimatey(k) can be calculated as y(k) =  

[x
T
(k) w(k+1)]. The corresponding a posterior output error is 

given by as e(k) = d(k) -y(k) and inequality |e(k)|  |e(k)|; 

0   1, should hold [5,2]. 

If we use this principle, and iterate (1)-(3), L  times on the 

same measurement data, i.e. input vector x(k) and teaching 

signal d(k) are kept constant, we get a data-reusing NGD 

(DRNGD) algorithm [6,7]. The equations, that describe 

DRNGD algorithm for nonlinear adaptive FIR filter, are 

 ( ) ( ( ) ( ))T

i iy k k k x w  (4) 

 ( ) ( ) ( )i ie k d k y k   (5) 

 
1( ) ( ) ( ( ) ( )) ( ) ( )T

i i i ik k k k k e k
  w w x w x  (6) 

subject to |ei+1(k)|  |ei(k)|; 0   1, i = 1, 2, , L. From (6) 

we have w(k+1)  = wL+1(k) and w(k)  = w1(k). 

Normalised GD algorithms for neural adaptive filters have 

improved performance comparing to the LMS and the NGD 

algorithm. Improved performance means lower sensitivity to 

certain filter design parameters, faster convergence, and higher 

accuracy [8,9,3,4]. It is well known fact, from the control 

system theory, that system should provide fast and accurate 

response to the input signal [10,11]. System bandwidth is 

responsible for the system response, i.e. larger bandwidth 

provides faster response. Unfortunately, large bandwidth can 

open a door to disturbances acting on the system, it can put 

system nonlinearities into the game, and reduce stability 

margin. Also, requirement for a small steady state error might 

result in slow response of the system [10,11]. The same holds 
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for neural adaptive filters and algorithms operating on them, 

since they form a dynamical system.   

Till now, relationship between the data reusing LMS 

(DRLMS) and normalized LMS (NLMS) algorithms was 

established and performance of the algorithms was studied and 

compared [3,6]. Performance of the DRLMS algorithm tends 

to tone of the NLMS algorithm, as number of DR iterations 

tends to infinity. There are indices that similar relationship 

holds for the DRNGD and the NNGD algorithms [3,6,8]. In 

this paper, we provide comparative analysis of the DRNGD 

and the NNGD  [4] algorithms . The paper is organized as 

follows. The second section brings analysis of the DRNGD 

algorithm in complex domain. Based on the analysis 

performance of the DRNGD and the NNGD algorithms are 

compared. The third section gives experimental verification of 

the analysis, while Section IV concludes the paper.  

II. ANALYSIS OF THE DRNGD ALGORITHM IN THE 

COMPLEX DOMAIN  

Equations (4)-(6) give the state space description of a 

discrete time (DT) nonlinear time invariant (NLTI) system. 

The teaching signal d(k), the weight vector w(k), and the input 

vector x(k) define an operating point of the system. Thus, in 

the vicinity of the operating point nonlinear model can be 

substituted with the linear one, obtained through the process of 

linearization. A Taylor series expansion of the filter output (4) 

yields 
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where partial derivatives are computed at the operating point, 

wi
(j)

(k) denotes j
th

 component of the vector wi(k) = wi(k) - 

w(k), and k = (x
T
(k)w(k)). A truncated Taylor series of (7) 

gives 

 ( )

1

( ) ( ) ( ) ( )
N

j

i k j i

j

y k y k x k w k


     (8) 

Now, linear description of the filter output is as follows 

 ( ) ( ) ( )T

i k iy k k k   x w  (9) 

where yi(k) = yi(k) - y(k). If we subtract d(k) from both sides 

of (8) we have 
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Further, subtraction of w(k) from both sides of (6) gives 

 
1( ) ( ) ( ( ) ( )) ( ) ( )T

i i i ik k k k k e k
    w w x w x  (11) 

If we introduce ei(k), given by (10), in (11), it becomes 

 1( ) ( ) ( ( ) ( )) ( ) ( ) ( )

( ( ) ( )) ( ) ( )

T T

i i i k i

T

i

k k k k k k k

k k k e k


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  (12) 

Under the assumption of a slow weight update, i.e. k’= 

(x
T
(k)w1(k))≈ (x

T
(k)w2(k))≈ ≈(x

T
(k)wL(k)), (9), (10), 

and (12) describe LTI system. Therefore application of the Z-

transform [12] on (9) and (12) yields 

 ( ) ( ) ( )T

kY z k z   x W  (13) 

    
2

( ) ( ) ( ) ( ) ( ) ( )T

k kz z k k z k E z 
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 

W I x x W x  

  (14) 

where I denotes identity matrix, z denotes complex variable, 

W(z) = Z[wi(k)], E(z) = Z[e(k)], and Y(z) = Z[yi(k)]. 

Also, initial value w0
(j)

(k)=0, j=1,2, ,N. From (14) we have 

    
1

2

( ) ( 1) ( ) ( ) ( ) ( )T

k kz z k k k E z 


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  (15) 

After application of matrix inversion lemma [10], (15) 

becomes 

 

 
2

2

2

( ) ( )
( )

1 ( )

k

k

k E z
z

z k






 

  

x
W

x

 (16) 

where ||||2 denotes second vector norm. Combining (13) and 

(16) we have 
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Now, under assumption of stability of the DRNGD algorithm, 

we can formulate the following propositions. 

Proposition 1. In the limit, as number of data-reusing 

iterations, L, tends to infinity, the NGD algorithm yields the 

normalised NGD (NNGD) algorithm.  

To prove the proposition note that e(k) is constant during data 

reusing iterations, thus E(z) = e(k)z/( z-1). Further, stability 

assumption, together with (16), and the final value theorem of 

the Z-transform yields 
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 (18) 

The last expression on the right hand side of (18) gives the 

weight correction of the NNGD algorithm, which completes 

the proof. 

Proposition 2. The NNGD algorithm tends to provide 

maximum bandwidth for the neural adaptive FIR filter.  
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If we introduce optimal learning rate OPT = 1/[(k’)
2
 || 

x(k)||2
2
]  [4] in (17), we have 

 
( )

( )
E z

Y z
z

   (19) 

The optimal learning rate places pole of the discrete transfer 

function, given by (17),  to zero. Therefore the NNGD 

algorithm provides maximum bandwidth of the neural 

adaptive filter. Now, we shall give several comments on the 

obtained results. 

Comment 1. From (16) and (17) it is clear that the DR 

NGD algorithm behaves as the first order DT dynamical 

system. Therefore, the dynamics of the DR iterations is 

described by the pole αDR = 1 - η(k’)
2
 || x(k)||2

2
. Further, the 

DR iterations, under the assumption of slow adaptation, i.e. 

small value of η, can be considered as a fixed point iteration 

(FPI) [3]. Thus, effective value of the pole of the DRNGD 

algorithm is αDRNGD = (αDR)
L

 = [1 - η(k’)
2
 || x(k)||2

2
]

L 
[3]. In 

order to provide stability of the DR iterations |αDR| < 1, and 

consequently limL->∞ (αDR)
L
 = 0. So, if number of DR 

iterations tends to infinity effective value of the pole of the 

DRNGD algorithm tends to zero. In this way the DRNGD 

algorithm tends to provide maximum bandwidth of the neural 

adaptive FIR filter. 

Comment 2. Introduction of the optimal learning rate in the 

DRNGD algorithm yields the fact that the algorithm reaches 

its final value in a single iteration. Therefore, yi(k) becomes 

y(k) = y(k) - y(k-1) and from (19) we have y(k) = e(k-1) = 

d(k-1) - y(k-1), and consequently y(k) = d(k-1).  The NNGD 

algorithm is optimal at each time instant, thus it is optimal on 

the whole trajectory.  

Comment 3. Usually, the optimal learning rate, within the 

NNGD algorithm, is modified in order to compensate for the 

linearization errors [3, 4]. Then the learning rate becomes  = 

1/[(k’)
2
 || x(k)||2

2
+C], where C appears as the algorithms 

design parameter and, in most of the applications, takes some 

small, suitable chosen, positive value. Now, (17) becomes 

 ( ) ( )
1

Y z E z
z




 

 
 (20) 

where  = (k’)
2
 || x(k)||2

2
/[(k’)

2
 || x(k)||2

2
+C]. Constant C has 

to be chosen to provide stability of the NNGD algorithm, i.e. 

|1 - |  1, however overall behaviour of the algorithm will be 

suboptimal. 

Comment 4. The fact that the NNGD algorithm tends to 

provide maximum bandwidth of the neural adaptive FIR filter 

might jeopardize the stability of the algorithm. Large 

bandwidth has the task to force the a posterior output error to 

zero, as in the dead beat controller [10]. This fact requires 

large correction of weights, which might lead the output 

neuron to saturation. In that case  = 0 and pole of the NNGD 

algorithm equals 1. Therefore, the algorithm becomes 

unstable. These facts indicate the choice of the value of 

constant C. It should be chosen neither too small, nor too 

large, because in either of these cases one can expect problems 

with stability of the NNGD algorithm. 

Comment 5. Similar line of reasoning, as given within the 

above comment, holds for the DRNGD algorithm. However, it 

is worth noting that relatively large value of αDR may yield 

relatively small value of the effective pole value αDRNGD = 

(αDR)
L
. Therefore, the DRNGD algorithm may provide large 

correction of weights, through the mechanism of DR 

iterations, without forcing the output neuron to saturation. 

Comment 6. In the case of linear activation function, the 

whole analysis holds. Further, there is no need for 

linearization procedure and the assumption on slow weight 

adaptation can be omitted. Also, there is no need for 

comments regarding the output neuron saturation. Obtained 

results then relates to the DRLMS algorithm and the NLMS 

algorithm. 

III. EXPERIMENTAL RESULTS  

In order to confirm the analysis system identification 

experiments were carried out on nonlinear systems. The 

experiments were performed as Monte Carlo simulations with 

100 independent runs. In all the experiments the logistic 

function Φ(x) = 1/(1+exp(-βx)) was nonlinear activation 

function of the output neuron and the slope of the logistic 

nonlinearity was set β = 4, and the number of DR iterations 

were taking value from the set L = {1, 3, 5, 10, 30, 50, 100}.  

In the first experiment the DRNGD and the NNGD algorithms 

were applied for system identification of the nonlinear system 

given by  

 
0( ) 1/ (1 exp( ( ) ))Ty k k   x w  (21) 

where w0 = [-0.09 0.34 -0.16 0.11 0.14]
T
 . The estimator was 

nonlinear neural adaptive FIR filter of the filter order N = 5, 

inputs to the system identification experiment were 

realizations of the Gaussian random process with zero mean 

and unite variance, and the initial value of weights were 

normally distributed random values, with zero mean and unite 

variance. The learning rate parameter, of the DRNGD 

algorithm, was η = 0.01. The constant C of the NNGD 

algorithm was C = 0.1. Performance measure was the square 

of the second norm of the weight error vector, v(k) = w0(k) – 

w(k). Results of the first experiment were summarized on Fig. 

1. and Fig. 2. Fig. 1. shows convergence curves for the 

DRNGD and the NNGD algorithm, while Fig. 2. presents 

average of the effective pole value for the applied algorithms. 

From the Fig. 1. it is obvious that increase in the number of 

DR iterations, L, improves performance of the DRNGD 

algorithm, and in the limit the DRNGD algorithm approaches 

performance of the NNGD algorithm. Fig. 2. shows that 

effective value of pole of the DRNGD algorithm approaches 

pole value of the NNGD algorithm as number of DR iterations 

increases. Further, there is obvious correlation between 

effective pole placement and performance of the DRNGD 

algorithm. 

In the second experiment, system identification of the 

nonlinear benchmark system [13], given by  

 
3

2

( )
( 1) ( )

1 ( )

y k
y k u k

y k
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
 (22) 
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Figure 1. Convergence curves in the first experiment 

 

Figure 2. Effective value of the pole of the algorithms in the first experiment 

was performed. The applied estimator was nonlinear neural 

adaptive FIR filter of the order N = 10, the initial value of 

weights were normally distributed random values, with zero 

mean and unite variance, the input to the system identification 

experiment was Gaussian random process with zero mean and 

unite variance, scaled to fit the range [0.1, 0.8], and the 

performance measure was the prediction gain, PG = 

10log10(σy
2
/ σe

2
), where σy

2
 denotes variance of the output 

prediction and σe
2
 denotes variance of the output error. 

The learning rate parameter, of the DRNGD algorithm, was 

taking values from the set η = {0.001, 0.01, 0.1, 0.2, 0.3, 0.5}, 

while the constant C, of the NNGD algorithm, was taking 

values from the range 0.001 to 100. Fig. 3. shows performance 

of the NNGD algorithm and an average pole value of the 

algorithm. Fig. 4. shows performance of the DRNGD 

algorithm with respect to the values of the learning rate 

parameter and the number of DR iterations. Further, Fig. 5. 

brings effective value of the pole of the DRNGD algorithm, 

while Fig. 6. presents average value of the pole of DR 

iterations. 

 

 
Figure 3. Performance curve and pole value of the NNGD algorithm in the 

second experiment 

 
Figure 4. Performance surface of the DRNGD algorithm in the second 

experiment 

From Fig. 3. it is obvious that for small values of the constant 

C the NNGD algorithm forces the output neuron to saturation, 

e.g. for C=0.001 average value of the activation of the output 

neuron was 18.32. Thus, pole of the algorithm becomes close 

to 1 and the overall behaviour of the estimator is quite poor. 

Also, performance of the estimator decreases as value of the 

constant C becomes very large. In this case value of the pole 

becomes close to 1, but the output neuron does not go to 

saturation, e.g. for C=100 average value of the activation of 

the output neuron was 0.93. On the other hand, from Fig. 4. is 

clear that for certain values of the learning rate and the number 

of DR iterations the DRNGD algorithm outperforms the 

NNGD algorithm. For very low value of η and low value of L, 

the DRNGD algorithm exhibits poor performance, due to the 

very slow adaptation of weights. In this case, as presented on 

Fig. 5, the effective pole value is close to 1. In the case of 

large value of L and relatively large value of η, the effective 

pole value is close to 0, thus the DRNGD algorithm forces the 

output neuron to saturation, and overall performance of the 
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estimator decreases. However, from Fig. 5. and Fig. 6. can be 

seen that DR mechanism may provide small effective pole 

value even in case of small value of the learning rate 

parameter, thus avoiding saturation of the output neuron. 

 
Figure 5. Effective pole value of the DRNGD algorithm in the second 

experiment 

 

 
Figure 6. Average pole value of the DR iterations in the second experiment 

IV. CONCLUSIONS 

The comparative analysis of the DRNGD and the NNGD 
algorithm in the complex domain has been performed. It has 
been shown that the DRNGD algorithm, under assumption of 
slow weight adaptation, i.e. small value of the learning rate 
parameter, approaches performance of the NNGD algorithm as 

number of DR iterations tends to infinity. The notion of the 
neural nonlinear adaptive filter has been introduced and 
studied. Correlation between the bandwidth of the filter and 
effective value of the pole of the algorithm has been 
established.  It has been shown that large bandwidth of the 
filter might force the output neuron of the filter to saturation, 
thus decreasing performance of the neural nonlinear adaptive 
filter. An undertaken nonlinear system identification 
experiments have supported the analysis. 
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