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Abstract— The purpose  of  in-house  developed  software  tool  is 
calculating  the  inductances  of  conductors  printed  on  flexible 
substrates. The inductances are obtained by integration through 
the conductors. In this paper, a method for fine modeling of the 
edges  of  conductors  is  explained.  Current  density  is  obtained 
from boundary conditions on the conductor’s edges. The results 
are validated by finite element simulations. 
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I.  INTRODUCTION

Recent  developments  in  printed  and  flexible  electronics 
have  provided  numerous  new  applications  [1].  Design  of 
flexible  components  can  be  helped  by  computer  programs 
aimed at predicting their performances. In this paper, we study 
an  improvement  for  a  computer  program  written  in  C++ 
designed for accurate modeling of inductors printed on flexible 
substrate. This program has already been tested by comparison 
with experimental results [2] and analytical expressions [3] and 
very good agreement has been found. However, in the case of 
meander inductors, the model can be improved by adding the 
edge effects.   In  the following paragraph the basic model is 
presented and some representative results are given. In the next 
paragraph, the improved model is described and potential and 
current density obtained by this model are validated through 
comparison with finite element method. Finally, a conclusion 
with intended future work is given.

II. INDUCTANCE CALCULATION

The inductors printed on flexible substrates are a specific 
electromagnetic problem: printed conductors are very thin and 
usually there are no ferromagnetic materials in the domain of 
study.  These  facts  make  the  inductance  calculation  of  such 
conductors by finite elements time and memory consuming and 
it  is  difficult  to  achieve  high  accuracy.  This  is  due  to  the 
meshing problems (caused by thin conductors and the need for 
meshing the empty space)  and domain truncation error.  For 
these  reasons,  a  software  package  called  Provod has  been 
developed,  based  on  calculation  of  vector  potential  by 
integration of current density through the conductors.  In  this 
way, only the conductors are divided into elements – there is 
no  need  for  meshing the  empty space.  By this  method,  the 
infinite domain is always taken into account. In addition, this 
method allows fast  computation by using parallel  computing 

[4].  Finally,  an  in-house  developed  program  allows  us  to 
simplify entering of geometry data by using pre-programmed 
curved shapes of the flexible substrate.

A. Basic inductance calculation method
All  conductors  in  the  domain  of  study  are  divided  into 

small  volume  elements.  The  inductance  is  calculated  by 
integrating over the elements using the following expression 
[5]:
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where: J – current density vector in the element;  A – vector 
potential  at  the  center  of  the  element;  dv –  volume  of  the 
element.  The  vector  potential  at  a  point  is  computed  by 
integration through all the other elements in the problem [5]:
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where:  R –  distance  between  elements;  µ –  magnetic 
permeability (of vacuum, in our case). The integrals in (1) and 
(2)  are  calculated  as  sums  over  all  the  elements  in  all 
conductors, excluding the same element (R=0). In Figure 1, an 
overview of the method is shown. The vector potential of the 
element 1 is obtained by taking into account current density 
and distance of all the other elements with respect to the center 
of the element 1. For example, in Figure 1 the element 2, its 
current  density  and  its  distance  R  from  the  element  1  are 
drawn.

Figure 1. Elements on conductors C1 and C2
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The initial geometry of printed components is defined by 
the printed pattern in a  plane.  In  the  Provod,  this pattern is 
entered as set of straight segments in u-v plane connected in 
series (please see example in Figure 2), each segment having 
uniform current density.

Figure 2. Segments of a conductor in u-v plane

 The  deformation  of  a  flexible  substrate  is  taken  into 
account when three-dimensional coordinates of each element 
are calculated [4]. The u-v coordinates of elements obtained by 
the initial geometry input are transformed by the program into 
x-y-z coordinate system. The deformation of flexible substrate 
is defined by using appropriate mathematical  expressions.  In 
this  manner,  the  user  does  not  need  to  draw  complicated 
geometries in three dimensions and the structure is described in 
the same way as it is fabricated afterwards – first it is printed 
on a flat support and then the substrate may be deformed.

The accuracy of the inductance calculation in  Provod has 
already been  confirmed  in  previously  published  papers  [2], 
[3], [4], [6]. The accuracy has been tested for flat and curved 
substrates. Curved substrates have been tested for two cases: 
spiral  and  circular  (and  other)  shapes,  due  to  the  separate 
representation of spirals in the code.

III. CURRENT DENSITY CALCULATION

The  use  of  uniform  current  density  for  inductance 
calculation, as it is described in section II, is an approximation 
which  is  valid  in  many  practical  cases,  but  the  goal  of 
presented  work  is  to  make  the  model  closer  to  the  reality. 
Computing  the  current  distribution  for  general  case  of  any 
conductor shape would be demanding and would change the 
whole software structure. However, it is possible to include a 
simple  model  of  a  corner  in  meander  inductors,  where  the 
current density now depends on 2D coordinates of an element. 
In this section, the calculation of current density from boundary 
conditions is described, and the obtained values are compared 
with finite element method.

A. Proposed modification of meander representation
A  meander  consists  of  straight-line  segments.  If  we 

consider  that  current  density  is  uniform in  the  middle  of  a 
segment, we should consider corners as the parts of meander 
where the current density (intensity and direction) depends on 
coordinates. 

B. Current density calculation method

The  current  density  in  any  conductor  is  given  by  the 
formula [7]:

EJ

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where σ represents the conductivity and E the electric field.

If we assume σ  = 1, the current density  is obtained as negative 
gradient of electric scalar potential inside a conductor:

VJ 


 (4)

From  Maxwell’s  equations  for  the  case  of  DC  conductors, 
Laplace’s equation for the potential is obtained [7]:

02  V  (5)

For functions which satisfy the equation (5),  the value of 
potential  at  a  point  inside  a  region  can  be  expressed  as  an 
integral of boundary values of the potential and its derivative 
on the region  boundary Γ, as follows [7]:
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where w is the potential function in two dimensions, equal 

to  –(1/2π)log(r),  r  being  the  distance  from  the  point  of 

integration to the point at which the potential is calculated.

We can now apply (6) to the case of corner which belongs 
to a conducting meander. An example is shown in Figure 3. 
First finite element simulation is made in order to determine 
the corner  size, we find  that  if  side 1 is 2mm long,  side 2 
should be 5 mm long. These dimensions have been studied in 
the presented examples.

Figure 3. Corner of a conductor in a plane

For the sides 2, 3, 5 and 6 the following boundary condition 
is valid:  0




n
V

.
 For the sides 1 and 4 the boundary conditions are V=V0 

and V=0, respectively. The value of V0 is an arbitrary choice, 
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which  can  be  used  for  scaling  the  obtained  solution.  The 
condition  imposed  in  Provod software  is  that  total  current 
should be equal to 1. V0 used in further text is obtained from 
finite element simulation in two dimensions with total current 
equal to 1 (model height is supposed to be 1 meter) and its 
value is 3.56 V for the given dimensions. 

From (4), the gradient of (6) will give us the current density as 
a function of boundary conditions:
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The expression (7) has been applied in the  Provod software 
tool.  

C. Results and validation
The potential and current density have been calculated by 

(6) and (7) and by finite elements on three different paths A, B 
and C inside a conductive corner (please see Figure 4). These 
paths are equally spaced with respect to the conductor edges (at 
0.5 mm distance). 

Figure 4. Paths A, B and C on a current conducting corner

The potential on these three paths, for points with 0.5 mm 
spacing, starting at 0.5 mm from the end of each path (Figure 
4), is given in Figures 5, 6 and 7, point numbers following the 
direction of the current.  

Figure 5. Potential on path A from Provod and finite elements software

Figure 6. Potential on path B from Provod and finite elements software

Figure 7. Potential on path C from Provod and finite elements software

The potentials computed in the  Provod on all three paths 
are in excellent agreement with the potentials obtained by the 
finite element method. The potential varies from a value close 
to 3.56 V (V0, at one end) to the value close to 0 (at the other 
end). We observe that the variation of potential at the middle 
points (at the corner) is the greatest for the path A (the most 
inner path) and it is the smallest for the path C which is the 
longest path.
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In  Figures  8,  9 and 10 the partial  derivative of  potential 
with respect to x axis on paths A, B, and C (shown in Figure 4) 
is given. 

Figure 8. Derivative of potential with respect to x on path A from Provod and 
finite elements software

Figure 9. Derivative of potential with respect to x on path B from Provod and 
finite elements software

Figure 10.  Derivative of potential with respect to x on path C from Provod 
and finite elements

The derivatives of potential with respect  to x match very 
closely the values obtained from finite elements. We expect the 
current density to have only x component at the end where the 
conductor lies on x axis and, at this end, all the current flows 
on  x  axis.  The  value  of  current  density  is  500,  this  is  the 
consequence  of  adjusting  V0 in  order  to  have  total  current 
(current density multiplied by the cross-section surface, which 

is equal to 0.002 square meters) equal to 1. In Provod software, 
the current density should be further scaled to take into account 
the conductor thickness. At the other end, where the conductor 
lies on the y axis, the current should flow on y axis and the x 
component of the current density should be close to 0.  This 
behavior is observed in Figures 8, 9 and 10. Each path has a 
corner point in the middle which explains the discontinuity of 
the slope in the middle of each curve.

In Figures 11, 12 and 13 the partial derivative of potential 
with respect to y axis on paths A,B and C (shown in Figure 4) 
is represented.

Figure 11. Derivative of potential with respect to y on path A from Provod 
and finite elements software

Figure 12. Derivative of potential with respect to y on path B from Provod 
and finite elements software
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Figure 13. Derivative of potential with respect to y on path C from Provod 
and finite elements software

The derivatives of potential with respect to y match closely 
the  values  obtained  from  finite  elements,  the  only  small 
discrepancies are observed for the smallest values of derivative 
at first two points. As expected, there is almost no y component 
of the current at the end where the conductor is placed on x 
axis.  At  the  other  end,  all  current  flows  on  y  axis.  The 
discontinuities  of  slopes  are  present  at  corner  points,  as 
expected.

General  behavior of the current density is well observed, 
the change of direction from x to y is found – at one end only 
the x component is present and it vanishes at the other end and 
y  component  behaves  accordingly.  The  values  of  current 
density match the finite element simulations.

IV. CONCLUSION

The  inductance  of  flexible  meander  conductors  can  be 
calculated  by  taking  into  account  the  edge  effects.  Current 

density  values  obtained  from the  boundary  conditions  for  a 
corner have been validated by comparison with finite element 
results. The conductors studied in this paper have corners with 
90° angle,  but  the presented  method can be applied for any 
angle.  Further  work  will  consist  in  implementing  this 
calculation  into  the  code  for  the  inductance  calculation,  in 
order  to  improve  the  accuracy  of  inductance  calculation  of 
printed conductors. 
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