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Abstract – In order to obtain fast dynamic response 
performance of an induction motor drive, the identification of 
mechanical parameters such as the drive inertia and the 
coefficients of friction, with a good accuracy, is highly desirable. 
They are essential for the design of the high-performance 
induction motor drive speed, as well as position controllers and 
speed observers, since a drive response is influenced not only by 
load disturbances but also by these mechanical parameters. 
Moreover, they are of great importance for the accurate dynamic 
modeling and simulation of various high-performance induction 
motor control strategies. In this paper an experimental off-line 
method for the mechanical parameters identification is 
presented. The method uses speed-time curve, obtained during 
the retardation test on the drive, with an appropriate mechanical 
losses model of the drive, and the mean squared error 
performance function based on a genetic algorithm (GA) 
approach, to obtain unknown mechanical parameters of the 
tested drive. The proposed method is verified by experiments.  

Keywords – genetic algorithm; induction motor; mechanical 
parameters identification; retardation test 

I.  INTRODUCTION 
Induction motors, as a part of electrical drives, are by far 

the most widely used rotating electrical machines in many 
industrial applications [1]. The vast majorities of induction 
motors are usually used in a low-performance drives [2], such 
as pump and fan applications. However, induction motors are 
also used in a high-performance drives [2], such as machine 
tools, extruders, propulsion systems for the electrical vehicles, 
etc. In order to obtain fast dynamic response performance of an 
induction motor drive, the knowledge of electrical parameters 
is not enough [3]. The mechanical parameters are also of great 
importance. 

The identification of the mechanical parameters, such as the 
drive inertia and the coefficients of friction, with good 
accuracy, is highly desirable. These parameters are crucial for 
the design of high-performance speed and position controllers. 
This is because a drive response is influenced not only by load 
disturbances but also by drive inertia and friction [4]. On the 

other hand, the identification of the mechanical parameters is 
also important for the accurate dynamic modeling and testing 
of various high-performance motor control strategies.  

Many researchers have done a great number of researches 
on parameters identification of the induction motor. However, 
most of them are mainly focused on electrical parameters 
determination, while only a few of them are related to the 
mechanical parameters identification. In [4] an observer-based 
auto-tuning scheme with two adaptive controllers is used to 
separately adjust the drive inertia and friction torque to their 
correct value. In [5] a genetic algorithm (GA) is employed with 
the aim of determining the mechanical and electrical 
parameters of an induction motor. However, the most common 
and simple method of determining the moment of inertia is by 
performing a retardation test on the induction motor drive [6]-
[11]. The retardation test is also suitable for the viscous friction 
coefficient identification [10], while the Coulomb friction is 
mainly neglected [9]. Nevertheless, the Coulomb friction may 
greatly affect the behavior of high precision drive systems [12]-
[13]. In [7] an example of the dry torque determination using a 
progressive start-up experiment is presented. However, the 
proposed experiment in [7] is more related to static friction 
determination, but not the kinetic, i.e. Coulomb friction. The 
static friction is usually larger than the Coulomb friction [13].  

The retardation test method is also used in this paper for the 
off-line mechanical parameters identification. The estimation 
of the drive inertia is similar to the procedure described in [6]-
[11] with the exception that before the retardation test is done 
the flux density level in the motor is to be reduced. Thus, the 
speed-time curve is less influenced by electromagnetic 
transients. This results in more accurate drive inertia 
estimation. The Coulomb friction torque is estimated to be 
equal to the torque developed by the motor at the drive speed 
where the absolute value of the deceleration of the retardation 
curve begins to increase. Finally, a GA approach is employed 
to fit the proposed mechanical losses model of the drive (with 
previously estimated drive inertia and the Coulomb friction 
torque) to deceleration curve obtained by the retardation test. 
As a result, the drive inertia, the Coulomb friction torque and 
the unknown friction coefficients of the drive are obtained. 
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II. ESTIMATION OF THE DRIVE INERTIA 
 The moment of inertia is a measure of the body’s 

resistance against a change of its rotational motion. It depends 
on the distribution of its mass relative to the axis of rotation 
[14]. The moment of inertia of a machine can be determined by 
an analytical calculation and by an experiment. Analytical 
computation is suitable during the design stage of the machine 
[11] but in the absence of the drive geometry details and used 
materials, it is ineffective for the whole drive inertia 
determination. Therefore, the drive inertia is usually 
determined by a direct experiment. The most common method 
of determining the drive inertia is by performing a test known 
as the retardation test on the drive [6]. The same method is 
used in this paper. However, in order to obtain a more accurate 
value of the drive inertia, the method is slightly modified in 
comparison to the ones described in [6]-[11]. 

The drive is run up to the speed above rated at no load. The 
supply voltage of the motor should be reduced as much as 
possible in order to reduce the flux density level in the motor to 
avoid electromagnetic transients (braking effect) after 
switching the power off, particularly for delta-connected 
windings. Then the motor’s supply voltage is switched off. The 
drive slows down and comes to rest while speed-time curve is 
recorded. At any rotational speed ω, power P consumed in 
overcoming the mechanical losses is given by [6]-[11]:  

 
dt
dJJ

dt
dP ω⋅ω⋅=ω⋅⋅= )

2
1( 2 , (1) 

where J is the drive inertia. From the retardation test the slope 
of the deceleration curve dω/dt is obtained at the speed ω1 
(usually ω1 is the rated speed). Then the drive is reconnected to 
the power supply and run at the speed ω1 by controlling the 
motor’s supply voltage, and the electrical power input P01 to 
the motor is measured. As an approximation, the mechanical 
power P1 at the speed ω1 may be taken as: 

 ( ) ( )111011 1 sPPPP FeJS −⋅−−= , (2) 

where PJS1 is the stator Joule losses obtained from the 
measurement of the stator current and resistance, PFe1 denotes 
the core losses, and s1 is the slip at the speed ω1 (the 
synchronous speed is known). The stray load losses in (2) are 
neglected, while the core losses, i.e. the stator core losses can 
be obtained by separation of no-load losses of the motor 
according to [15]. Now, using (1) and (2), the drive inertia can 
be calculated as:  
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Main problem in this method is that the mechanical losses 
cannot be estimated accurately because the rotor core losses in 
(2) are neglected. Besides, in the case of motors operated by 

PWM inverters, the core losses and the mechanical losses 
cannot be accurately separated because additional core losses 
appear due to higher order harmonics in the supply voltage. 
The core losses due to PWM harmonic voltages can be 
significant compared to a sinusoidal supply. These additional 
core loss components depend on the modulation index and on 
the inverter switching frequency [16]-[17]. The results in [16]-
[17] show that core losses increase with decreasing modulation 
index, while increasing the switching frequency (above 5 kHz) 
has no significant effect on additional core losses, i.e. they 
remain almost constant independently of switching frequency. 
For those reasons it is rather difficult to achieve a good 
accuracy of the mechanical losses determination described by 
(2). However, the difficulties associated with additional core 
losses can be overcome if the motor in this test is supplied by 
the sinusoidal voltage instead by PWM inverter. This will 
significantly improve the accuracy of the drive inertia 
determination.  

On the other hand, in order to provide higher level of 
accuracy, the drive inertia obtained from (3) will be tuned to 
more accurate value using the mechanical losses model of the 
drive and the GA approach. This will be discussed in the next 
sections. 

III. THE MECHANICAL LOSSES MODEL 
The mechanical losses in an induction motor drive are a 

result of mechanical losses in the induction motor and power 
losses in various parts of the transmission systems. Before the 
mechanical losses model of the tested drive system is 
established, the paper gives a short overview of each loss 
component.  

A. Modeling the Induction Motor’s Mechanical Losses 
Mechanical losses in the induction motor occur due to 

friction in motor bearings and air movement in the motor. They 
are usually referred as bearings friction losses and windage and 
ventilation losses. The amount of these losses can be 
considerably large during a high-speed motor operation, and 
for totally enclosed fan-cooled motors. 

The bearings are used in electrical machines to support the 
rotor and to keep the rotor centered in the stator [15], [18]-[19]. 
There are numerous different types of bearings that are used for 
electrical machines. The right selection depends on design 
requirements and operating conditions of the application [19]. 
In small machines ball bearings are commonly used, while in 
larger or heavily loaded machines roller bearings are typically 
used [19]. Regardless the type of bearings, they always 
contribute to the machine’s overall friction power losses. The 
total friction in a bearing is the result of the rolling and sliding 
friction in the contact areas, between the rolling elements and 
raceways, between the rolling elements and a cage, and 
between the rolling elements and other guiding surfaces [20]. 
Friction is also generated by the lubricant drag and contact 
seals, if applicable [20]. The amount of friction depends on the 
loads, bearing type and size, operating speed, and properties 
and quantity of the lubricant [20]. The theoretical background 
of each of these sources of friction, including the mathematical 
formulation, is briefly explained in [20]-[21].  
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Friction is an extremely complex nonlinear phenomenon. 
Different models for the estimation of the bearings friction 
torque are available in literature. Five different models are 
described in [21] including the more advanced SKF bearing 
friction model [20]. Each of the models from [21] estimates the 
friction torque by grouping the individual sources together and 
quantifying them by empirical formulas. However, in this 
paper, the rotary Coulomb friction model [21] is adopted due to 
its simplicity. According to this model, the bearings friction 
torque Tb can be approximated as [20]-[21]: 

 )sgn(5.0 ω⋅⋅⋅μ⋅= dFTb , (4) 

where μ is the kinetic friction coefficient, F is the resultant 
bearing load, and d is the bearing bore diameter. Equation (4) is 
valid under certain conditions, such as: equivalent bearing load 
is 10% of the load rating, good lubrication, normal operating 
conditions (speed range 30-70% of the kinematically 
permissible speed) and no additional stress [21]. The kinetic 
friction coefficient μ is an experimentally determined constant. 
Its value depends on the bearing type and size, the bearing 
load, the load angle, and the rotational speed [21]. In [20] some 
typical values of the kinetic friction coefficient can be found. 

It should be noted that at low-speed operation there is a 
considerable amount of mixed friction in bearings because 
rolling contacts are not yet separated by a lubricant film [20]. 
This is not included in (4). Low-speed drive operation is not 
considered in this paper.  

A more complete evaluation of the bearings friction, 
including the influence of each contact areas and friction 
components, can be done using more advanced friction models 
and specialized software tools, but the manufacturer’s 
specifications on the bearings and the lubricant are required. 
Usually, these data are difficult to be provided. For that reason, 
the model defined by (4) is more convenient because it only 
requires the knowledge of a few constants. 

However, the bearings friction torque Tb can be estimated 
in a different way than it is proposed by (4). In [7] an example 
of the dry torque determination using a progressive start-up test 
experiment is presented. Nevertheless, the proposed 
experiment in [7] is more related to the static friction 
determination, but not the kinetic friction. This paper suggests 
that the bearings friction torque can be approximated as the 
torque developed by the unloaded induction motor at the speed 
ωb at which the absolute value of the deceleration of the 
retardation curve begins to increase. Here it is assumed that 
from the speed ωb the bearing friction torque starts to increase 
as speed decreases since a lubricant film is lost. Accordingly, 
the stator supply voltage at the rated frequency is reduced until 
the motor speed decreases to the value that is approximately 
equal to ωb. Then, the bearings friction torque can be 
approximated as follows:  

 ( )
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where Pb is the power absorbed by the motor when the motor 
speed is approximately equal to ωb, PJSb denotes the stator 
Joule losses obtained from the measurement of the stator 
current and resistance, sb is the slip at speed ωb, p is the number 
of pole pairs, and ωs is the synchronous speed at the rated 
frequency. Note that the core losses in (5) are neglected since 
the stator voltage is small. To determine the speed ωb speed-
time curve, obtained during the retardation test, is needed.  

Windage losses are friction losses associated with the 
friction between the rotor surface and the surrounding fluid, 
usually air within the air-gap [22]. This term is generally used 
to denote the loss due to fluid drag on a rotating body [23]. 
Windage losses are influenced by the rotor peripheral velocity, 
stator and rotor geometry and their surfaces roughness, the 
properties of the rotor’s surrounding air and the length of the 
air-gap (the smaller the air-gap, the bigger the windage losses) 
[24]. Under the assumption that the rotor can be modeled as a 
rotating cylinder in an enclosure, the windage torque Tw1 can be 
expressed as follows [22]:  

 rrMw lDCkT ⋅⋅ω⋅ρ⋅π⋅⋅⋅= 42
11 32

1 , (6) 

where k is a roughness coefficient, CM1 is the torque coefficient, 
ρ is the density of air, Dr is the rotor diameter, and lr is the 
rotor length. The torque coefficient CM1 depends on the Couette 
Reynolds number and it is determined by measurements [22]. 

The end surfaces of the rotor also create windage losses. 
Under the assumption that these parts can be modeled as discs 
rotating in free space, the windage torque Tw2 can be expressed 
as follows [22]:  

 )(
64
1 552

22 rirMw DDCT −⋅ω⋅ρ⋅⋅= , (7) 

where Dr is the outer diameter of the rotor, Dri is the shaft 
diameter, and CM2 is the torque coefficient which, in contrast to 
(6), depends on the Reynolds number. However, the Couette 
Reynolds number and Reynolds number depend on the speed, 
which means that torque coefficients CM1 and CM2 are speed 
dependent.  

The windage torque caused by the rotating parts of the 
machine is now the sum of (6) and (7):  

 21 www TTT += . (8) 

It follows from (6)-(8) that the windage torque increases 
with the square of the rotor speed, i.e. the windage power 
losses increases with the cubic of the rotor speed. This is of 
particular interest for high-speed motors. 

Besides bearings friction losses and windage losses, 
ventilation losses also belong to mechanical losses. Induction 
motors are normally provided with a cooling system with the 
main objective to remove the heat generated by power losses in 
the motor. The cooling system consists of an internal shaft 
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mounted fan, or it can be driven by another motor (usually in 
variable-speed drives) [22]. The blades attached to the rotor 
short-circuiting ring have also a ventilating effect [25]. 
Windage losses and ventilation losses occur together. In [22] 
an experimental equation for the sum of windage and 
ventilation losses is given. These losses, expressed via the 
windage and ventilation torque Twv, are:  

 ω⋅τ⋅+⋅⋅⋅= ρ )6.0(
4
1 3

prrwv lDkT , (9) 

where kρ is an experimental factor (typical values can be found 
in [22]), Dr is the rotor diameter, lr is the rotor length and τp is 
the pole pitch. Equation (9) is valid for normal-speed motors, 
while for high-speed motors (7) and (8) have to be used.  

B. Modeling the Drive’s Mechanical Losses 
The induction motor drive which is considered in this paper 

is shown in Fig. 1. The system consists of the three-phase cage 
induction motor (supplied by the power inverter) coupled to the 
wound-field synchronous machine. Besides, there is a flywheel 
system coupled directly to the induction motor shaft.  

The drive from Fig. 1 is used to provide a variable 
frequency sinusoidal voltage source used for AC machines 
tests, as well as to test wound-field synchronous machine and 
flywheel energy storage system in renewable and distributed 
energy applications. 

The total mechanical losses of the induction motor drive 
from Fig. 1 are a superposition of the mechanical losses from 
the both machines, and from flywheel and mechanical 
coupling. On the basis of the results obtained for the induction 
motor’s mechanical losses formulation, the mechanical losses 
model for the synchronous machine will be established. These 
losses results from bearings and brush friction losses, and 
windage and ventilation losses.  
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Figure 1.  Induction motor drive system configuration. 

Considering that a similar bearings type are used in both 
machines, and that they operate under similar working 
conditions, the bearings friction torque in the synchronous 
machine can be expressed as in (4). Brush friction usually has 
the Coulomb sliding friction characteristic. The torque to 
overcome the brush friction depends on the brush pressure, 
brush grade, contact area, and the condition of the slip rings 
[26]. Brush friction torque is a constant. It has been suggested 
in [26] to perform two retardation tests, one with brushes lifted 
and one without brushes lifted, to experimentally obtain brush 
friction torque. However, such a test has not been performed in 
this paper since the brush friction torque will be incorporated in 
the bearings friction torque of the tested drive. Besides, the 
sum of the bearings and brush friction torques can be 
approximately estimated as it is previously proposed for the 
bearings friction torque estimation for the induction motor. 

The wound-field synchronous machine from Fig. 1 has a 
salient-pole rotor with a squirrel-cage winding distributed over 
the rotor. For that reason, this machine can be considered to 
have cylindrical-rotor with respect to windage and ventilation 
losses. Knowing the machine geometry, windage and 
ventilation torque can be calculated from (9).  

The torque Tf of a thin flywheel disk caused by air 
resistance is described by [27]:  

 52
fmf DCT ⋅ω⋅ρ⋅= , (10) 

where Cm is the torque coefficient associated with the type of 
air flow (depends on the Reynolds number), ρ is the density of 
air, and Df is the is the radius of the flywheel.  

The air resistance torque of mechanical coupling losses can 
also be approximated by (10). However, it should be noted that 
the mechanical losses due to flywheel and mechanical coupling 
air resistance to motion are much lower than the windage and 
ventilation losses of the drive. 

In order to obtain a more convenient mechanical losses 
model of the whole drive from Fig. 1, and to avoid the need for 
knowledge of the machines geometry, some modifications of 
the presented models will be carried out. The windage and 
ventilation losses model of the drive from Fig. 1 can be 
similarly expressed as (9), while for high-speed (6) and (7) 
have to be used. The flywheel and mechanical coupling air 
resistance to rotation can be modeled as (10). Taking (6), (7), 
(8), (9) and (10) into consideration, it is possible to replace 
these equations with their simpler and more convenient form. 
Namely, the paper proposes the corresponding torque Tρ (sum 
of the mechanical losses due to windage and ventilation, and 
flywheel and mechanical coupling air resistance to rotation) to 
be modeled by the following expression:  

 )1( ω⋅+
ρ ω⋅= abT , (11) 

where a and b are coefficients of the drive. This model is 
consistent with the previous ones, except that the loss influence 
factors are expressed in a much more convenient way, through 
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the coefficients a and b. Substituting a = 0 in (11) the model (9) 
is obtained, while substituting a⋅ ω = 1 (with different b values) 
in (11) the models (6), (7) and (10) are obtained. The term 
a⋅ ω in (11) is speed dependent and it is used as the replacement 
for coefficients associated with the type of air flow which 
depend on the Couette Reynolds and Reynolds numbers.  

Using the estimated drive inertia J from (3), bearings and 
brush friction torque Tbb from (5), and the speed-time curve 
recorded during the retardation test, the unknown coefficients 
from (11) can be obtained on the basis of the Newton’s second 
law of rotational motion for unloaded drive:  

 
J

bT
dt
d a

bb
)1( ω⋅+ω⋅+−=ω . (12) 

The deceleration curve, obtained by performing the 
retardation test on the drive, is fitted to model (12) using the 
mean squared error performance function based on the GA 
approach. This will be discussed below. 

IV. GENETIC APPROACH TO MECHANICAL PARAMETERS 
IDENTIFICATION 

In this section the model defined by (12) uses a GA 
approach to identify unknown coefficients a and b after a 
number of iterations that satisfy the fitness function and all 
constraints. Moreover, the GA is also used to tune the drive 
inertia J and the bearing and brush friction torque Tbb to more 
accurate values. This is done because the methods defined by 
(3) and (5) are influenced by the modeling and measurement 
errors. A brief introduction to the GA is presented. 

A GA was introduced by J. H. Holland [28]. It is a model of 
machine learning which is based on the natural processes of 
selection and evolution. The GA uses a stochastic approach 
which operates on individuals of a population, applying the 
principle of survival of the fittest which then evolves toward 
the solution of the selected problem [28]. The basic principles 
of the GA are quite simple. The first step is the selection of 
individuals from an initial population. The individuals carry 
chromosomes which are potential solutions to the selected 
problem. The algorithm usually selects individuals that have 
better fitness values. The second step is genetic manipulation 
of the selected individuals by crossover and mutation methods, 
including elitist selection. This results in new population which 
is better than the previous generation. At each next step, the 
GA uses the current population to create the next generation. 
The algorithm stops when the stopping criteria are met. 

In this paper the main goal of the GA is to find the 
mechanical parameters of the drive from the model defined by 
(12). The fitness function is defined in such a way that the 
fitness values are minimized:  
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where fit denotes the fitness function, mse stands for the mean 
squared error, dωm/dt(i) are the elements of the vector which is 
composed of the angular deceleration points obtained by the 
retardation test on the drive, and dω/dt(i) are the vector’s 
elements of the angular deceleration points estimated by (12).  

Equation (13) is an optimization problem which has been 
solved in this paper by the GA solver using Matlab’s 
Optimization Toolbox [29]. The GA is a relatively new 
optimization technique, but it has been proved as an effective 
method for the process optimization. Yet, options for the GA 
solver need to be carefully selected. Otherwise, the GA method 
would get stuck in local minima. The knowledge about the 
proper selection of the GA parameters has a rather empirical 
background and some recommendations can be found in [30]. 
Table I provides a quick overview of the most important 
selected parameters and methods provided by Matlab’s 
Optimization Toolbox that has been used in this paper for 
mechanical parameters identification.  

The size of the population depends on the problem 
complexity. The problem of optimal population size has been 
studied in literature, but a general rule cannot be applied to 
every problem. In this paper population size has been tuning 
until reaching reasonable value of the fitness function (13).  

Furthermore, it is particularly important to specify an initial 
population of the GA. If not, Matlab creates a random initial 
population using a creation function which can lead to bad 
performance of the algorithm. The initial values of the drive 
inertia J and the bearings and brush friction torque Tbb can be 
calculated according to (3) and (5), respectively, while the 
initial value of the coefficient a can be selected to be zero. The 
initial value of the coefficient b can be roughly selected 
according to the mechanical losses data of the motor (drive) 
obtained by no-load test [15]. This ensures diversity in the GA 
and provides the GA to converge quickly for finding near-
optimal solution to the problem. 

The fitness scaling option is Rank, which scales the raw 
scores based on the rank of each individual. 

Selection function selects individuals, i.e. the parents from 
the population, based on their scaled values from the fitness 
scaling function. In this GA, the Stochastic uniform function 
has been selected to perform the selection. 

TABLE I.  PARAMETERIZATION OF THE GA 

Options Values, methods 

Population size 50 

Fitness scaling Rank 

Selection function Stochastic uniform 

Reproduction Elite count: 2; Crossover fraction: 0.8 

Mutation function Adaptive feasible 

Crossover function Heuristic, ratio: 2 

Stopping criteria Generations: 100; Stall generations: 50 
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Reproduction determines method which is used for each 
new generation creation. Elite count specifies the number of 
individuals that will be moved to the next generation. 
Crossover fraction defines the fraction of the next generation 
produced by a crossover manipulation. The remaining 
individuals in the next generation will be produced by 
mutation. Elite count has been selected to be 2 and Crossover 
fraction 0.8. This provides good results. 

Mutation function provides genetic diversity by preventing 
the population of chromosomes from becoming similar to each 
other. The Adaptive feasible function has been specified to 
perform the mutation.  

Crossover function combines two individuals in order to 
generate a new individual for the next generation. Several 
crossover functions have been tested. Heuristic function with 
ratio 2 gives satisfactory results. 

The GA is iterated until a termination condition has been 
reached. Terminating conditions are the maximum number of 
iterations (100) and stall generations (50). 

V. EXPERIMENTAL RESULTS 
The mechanical parameters were determined on the drive 

from Fig. 1. The cage induction motor has following rated data: 
20 kW, 380 V, 40 A, 50 Hz, 1455 rpm, delta-connected 
windings. For this experiment the motor was connected to the 
sinusoidal three-phase supply 400 V, 50 Hz (transfer switch in 
Fig. 1 was in position 2) though the variac which controls the 
supply voltage. An optical encoder was attached to the shaft for 
speed measurement. During tests, the drive was unloaded, i.e. 
the synchronous machine (Fig. 1) was not excited. 

Before the retardation test was done, the no-load test (at the 
motor’s rated frequency) [15] of the drive was performed to 
separate the mechanical losses from the core losses. The result 
of this experiment is shown in Fig. 2. 

For the retardation test the motor was supplied with the 
reduced voltage at the rated frequency and was run under the 
steady-state on the unloaded drive. The motor (drive) speed 
had to be slightly over rated speed and was set to 1490 rpm 
(156 rad/s), while the supply voltage was 113 V. It was 
necessary to wait some time to stabilize the temperature of the 
drive’s bearings and then the motor was disconnected from the 
power supply and the speed-time curve was recorded. The 
result of the retardation test is shown in Fig. 3. From Fig. 3 a 
time derivative of the rotating speed can be obtained (Fig. 4). 
The specific part of the angular deceleration curve at low 
speeds is enlarged in Fig. 4. After the retardation test was done, 
the motor was reconnected to the power supply and ran at the 
near of its rated speed by controlling the motor’s supply 
voltage. The motor (drive) speed was set to 1450 rpm 
(ω1=151.8 rad/s), while the supply voltage was 57 V. The 
electrical input power to the motor P01, the stator current I01 
and the stator winding resistance Rs were measured. The core 
losses PFe1 were read on the curve of Fig. 2, while the angular 
deceleration dω/dt at the speed ω1 was read on the curve of 
Fig. 4. The drive inertia was calculated according to (3). 
Table II describes the results obtained on the drive. The value 
of the drive inertia will be used in initial population of the GA. 
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Figure 2.  Separation of the no-load losses. 
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Figure 4.  Angular deceleration curve. 

TABLE II.  THE RESULTS OBTAINED FROM THE RETARDATION TEST 

ω1 

(rad/s) 

(dω/dt)ω=ω1 

(rad/s2) 

P01 

(W) 

I01 

(A) 

Rs 

(mΩ) 

PFe1 

(W) 

P1 

(W) 

J 

(kgm2) 

151.8 − 3.379 602 7.37 311 10 556 1.084 

The bearings and brush friction torque Tbb can be easily 
approximated as described in (5) for the bearings friction 
torque Tb determination. However, it is previously necessary to 
identify the speed ωb at which the absolute value of the angular 
deceleration of the retardation curve begins to increase. This 

1
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characteristic speed was readily found on angular deceleration 
curve and its value is ωb = 3.87 rad/s (enlarged part of the 
curve in Fig. 4). Thereafter, the stator supply voltage was being 
reduced until the motor speed was decreased to the value of ωb. 
Nevertheless, the proposed procedure was associated with the 
static stability problem of the drive system and exact value of 
ωb could not be achieved. For that reason electrical input power 
to the motor Pb, the stator voltage Ub, current Ib and the stator 
winding resistance Rs were measured for a few operating points 
slightly above the speed ωb, and then the bearings and brush 
friction torque Tbb was estimated for the speed ωb by an 
extrapolation procedure. This procedure involved the use of (5) 
for each achieved operating point in order to obtain the torque 
T developed by the motor. Afterwards, the bearings and brush 
friction torque Tbb was extrapolated. It should be noted that (5) 
is valid for low-speed drive operation, as was the case here. 
The results are summarized in Table III.  

Eventually, the mechanical parameters identification was 
undertaken using the proposed GA and the fitness function 
(13), including angular deceleration curve from Fig. 4, 
whereby the estimated drive inertia J and the bearings and 
brush friction torque Tbb from Table II and Table III, were used 
as initial values. Since the rotor core losses in (2) and (5) were 
neglected, as well as the windage and ventilation losses in the 
bearings and brush friction torque estimation, it was expected 
that the actual values of the drive inertia and the bearings and 
brush friction torque were lower than the previously estimated 
ones. With regard to this, previously estimated values of the 
drive inertia J and the bearings and brush friction torque Tbb 
were specified as upper bounds on these variables. The initial 
value of the coefficient a from (11) was selected to be zero, 
while the initial value of the coefficient b was roughly selected 
according to the mechanical losses data of the motor (drive) 
obtained by no-load test (Fig. 2), e.g. 0.024 (Table IV). The 
initial value of the coefficient a was specified as lower bound 
on this variable, while the coefficient b was specified as upper 
bound on this variable. The GA was run several times until the 
mechanical parameters set was obtained (Table IV). The 
objective function value of the best solution is 1.9809⋅10-4. 

TABLE III.  THE RESULTS OF THE BEARING AND BRUSH FRICTION 
TORQUE ESTIMATION 

ω 

(rad/s) 

Pb 

(W) 

Ub 

(V) 

Ib 

(A) 

Rs 

(mΩ) 

T 

(Nm) 

Tbb 

(Nm) 

9.74 184.2 25.17 11.67 311 0.903 

- 7.64 169.4 24.17 11.20 311 0.830 

5.12 153.3 23.00 10.70 311 0.749 

3.87 - 0.709 

TABLE IV.  THE RESULTS OBTAINED BY THE GA APPROACH 

Mechanical parameters J 
(kgm2) 

Tbb 
(Nm) 

a 
 

b 
 

Initial values 1.084 0.709 0 0.024 

Final values 1.078 0.6544 0.00098 0.0093 

The mechanical losses components of the tested drive, 
obtained by the proposed methods, are shown in Fig. 5. It 
should be noted that low-speed drive operation was not 
considered in this paper, i.e. it is not covered by the proposed 
mechanical losses model. It is assumed that below the speed ωb 
the bearings friction torque starts to increase as speed decreases 
since a lubricant film is lost. This is not included in the 
proposed bearings and brush friction torque model. For that 
reason the mechanical parameters set from Table IV are not 
valid below speed ωb (Fig. 4). However, it is interesting to 
calculate the mechanical losses of the drive (Pm) from Fig. 1 at 
no-load (ω=157 rad/s) according to the proposed model and the 
loss coefficients obtained by the GA approach (Table IV): 

 ( ) W602)1( =ω⋅ω⋅+= ω⋅+a
bbm bTP . (14) 

The result of (14) is in good agreement with the experimental 
result obtained by no-load test of the drive (Fig. 2). 

In order to validate the proposed mechanical losses model 
and methods for the estimation of the mechanical parameters of 
the drive, additional experiments were carried out. The motor 
was connected to a 60 Hz source at reduced voltage (transfer 
switch in Fig. 1 was in position 1 and the motor was connected 
to power inverter) and was run under steady-state on the 
unloaded drive. Then the retardation test was performed. The 
result of this experiment is shown in Fig. 6, where it is also 
shown the estimated retardation curve obtained according to 
(12) with the parameters from Table IV. 
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Figure 5.  The mechanical losses components of the tested drive. 
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Figure 6.  Retardation test on the drive at 60 Hz. 
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As shown in Fig. 6 the estimated retardation curve is in a 
good agreement with the experimental curve. 

Another experiment was performed on the drive from 
Fig. 1 with the flywheel removed. The flywheel is a solid, 
uniform disk which has inertia of 0.1454 kgm2. Since the 
flywheel was directly coupled to the motor shaft, after it was 
removed, the drive inertia referred to the motor shaft is 
0.9336 kgm2. In this experiment the motor was supplied with 
the reduced voltage at the rated frequency and was run under 
the steady-state on the unloaded drive. At that moment the 
retardation test was performed. The result of this experiment is 
shown in Fig. 7. The same figure shows the estimated 
retardation curve obtained according to (12) with the 
parameters from Table IV, but with the drive inertia of 
0.9336 kgm2. As can be seen in Fig. 7, there is a certain 
discrepancy between the experimental and the estimated 
retardation curves. This disagreement is noticeable at lower 
speeds regions. The reason for discrepancy between results can 
be found in the resultant bearings load. Namely, when the 
flywheel was removed, according to (4) the resultant bearings 
load was decreased. Besides, disagreement also exists because 
there were no the mechanical losses due to flywheel air 
resistance to motion. To correct the estimated retardation 
curve, the bearings and brush friction torque was estimated 
again employing the proposed GA method, while the other 
mechanical parameters (a and b from Table IV) were not 
changed. The results are shown in Fig. 8. The estimated 
retardation curve, obtained according to (12) with new 
estimated value of the bearings and brush friction torque 
(0.62 Nm), shows good agreement with the experimental 
curve, validating the effectiveness of the proposed method. 
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Figure 7.  Retardation test on the drive at 50 Hz without flywheel. 
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Figure 8.  Retardation test on the drive at 50 Hz without flywheel - Corrected 
estimated curve. 

VI. CONCLUSION 
In this paper, the experimental method for the identification 

of the mechanical parameters of the induction motor drive was 
presented. The method is based on the improved retardation 
test with the help of the GA.  

In addition, the mechanical losses model of the tested drive 
was established. Novel modeling approach of the windage and 
ventilation losses was introduced. The model is much more 
suitable for practical use, compared to the ones that can be 
found in literature, since it does not require a detailed 
knowledge of the machines geometry. 

The effectiveness of the proposed methods was 
demonstrated by experiments. Good agreements were found 
between the estimated and the experimental results. 

Future researches should follow up on improving the 
mechanical losses model of the drive system in low-speed 
regions and at standstill. 
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