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Abstract—System approach for analysis of Luenberger observer 
for vector-controlled induction motor drives without shaft sensor 
is presented in this paper. Important aspects of control algorithm 
for induction motor system were described in detail. Realization 
of control algorithm based on Luenberger observer calculation 
mehod for estimation of unknown induction motor states is 
performed within appropriate digital signal controller (DSC). 
Verification is given through simulation and experimental results 
of vector–controlled induction motor sensorless drive. 
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NOMENCLATURE 

us – stator voltage vector 
is – stator current vector  
ψr – rotor flux vector 
Rs – stator phase resistance 
Rr – rotor phase resistance 
Lm – mutual inductance 
Lr – rotor self inductance 
Tr – rotor circuit time constant 
Lσ – equivalent stator circuit leakage inductance 
ωr [rpm] – actual rotor angular speed 
Te – electromagnetic torque 
Tm – load torque 
Jm – motor inertia coefficient 
P – number of motor pole pairs 

I. INTRODUCTION 

Various methods based on sensorless vector control (VU) 
of induction motor (IM) drives have been studied and proposed 
over past few decades, [1−6]. One of the very versatile 
techniques based on observer characteristic, [3−6], are in 
advantage to open-loop techniques, [1] and [2], because of 
feedback control law inherited within observation phenomena. 

Digital signal controller (DSC) based IM vector–controlled 
drives without shaft sensor in very first period of their 
exploitation were exclusively used for low performance drive 
applications. Specified algorithms for estimation of unknown 
machine states are demanded in the case of VU sensorless 
drives and such algorithms could only be implemented in high-
speed DSC platforms. Concept of VU for performance 
improvements of these drives also requires the use of power 
electronic devices with high frequency switching capabilities. 
Stability and robustness of vector−controlled sensorless drives 
are crucial attributes for quality drive operation. For the 
fulfillment of these conditions the use of quality and often 
expensive micro– and power–electronic devices is imposing as 
inevitable fact. 

Today, with the grown–up trend of development and price 
reduction in area of electronics goes the increase in the use of 
sensorless VU drives. More complex and sophisticated control 
algorithms can be transferred to DSC and high performance 
characteristics of IM drives can be achieved. This enables the 
utilization of these drives in high performance drive 
applications. Lack of shaft sensor leads to decrease in cost and 
the increase in reliability and security of considered drives. 
Complicated installation of optical incremental encoder or 
resolver cables and connectors magnifies the risks of various 
faults. Besides, mounting of a shaft sensor is not applicable in 
many areas of practical usage, [9]. 

Global needs for power efficiency often impose the 
utilization of specified algorithms within control unit for better 
evaluation of IM states. One of the most common used 
algorithms for estimation and improvement in control 
performance of IM drive is based on mathematical model of 
IM called Luenberger observer (LO). In this paper, evaluation 
of LO based sensorless method for IM, theoretical introduction 
in system observability as well as the construction method for 
appropriate LO and DSC realization are considered. Validation 
is given through simulation and experimental results at various 
operational conditions. 

II. INTRODUCTION TO OBSERVERS 

The availability of entire state vector is essential for 
performance improvement of general system S governed by 

�̇(�) = ��(�) + ��(�).               (1) 

Optimal control law implementation in form of 

�(�) = �(�(�), �),               (2) 

can be constructed for relevant system S if its entire state vector 
is known e.g. through measurement. In practice this differs for 
the most of complex systems where some items within state 
vector remain unknown because of measurement disability 
nature of corresponded items. In that case, one of the most 
common approach for construction of control law deduced in 
form of (2) includes the estimation of unknown part of state 
vector in the manner of system observability phenomena. 

System observability characteristic involves the fact of 
linear tracking the state vector of supervised system S1 via state 
vector of second system S2 which is, in the most cases, driven 
by available outputs of system S1. Such driven system is called 
the observer to S1 system. As a result, unknown part of the S1 
state vector can be derived for control law implementation or 
other sensorless control methods within general system. 
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Here, free observation system theorem will be introduced 
for better understanding of a system observability 
characteristic. Further theoretical analysis will be restricted to 
linear time–invariant systems without of loss in generality. 

Theorem 1: Let S1 be a free system, �̇(�) = ��(�), which 
drives S2 �̇(�) = ��(�) + ��(�) . Suppose there is a 
transformation �  which satisfy �� − �� = � . If �(0) =
��(0), then �(�) = ��(�) for all � ≥ 0. Or more generally, 

�̇(�) = ��(�) + ���[�(0) − ��(0)].               (3) 

Proof: We may write immediately 

�̇(�) − ��̇(�) = ��(�) + ��(�) − ���(�).               (4) 

Substituting �� − �� = � this becomes 

�̇(�) − ��̇(�) = �[�(�) − ��(�)]               (5) 

which has (3) as a solution, [7]. 

One of the most convenient observer is one where 
transformation matrix � is the identity matrix � (� = �). This 
observer is called the identity observer because state vector of 
free system �(�)  is identically related to the observer state 
vector �(�) as shown in the form 

�(�) = �(�).              (6) 

As a result, those systems have same dynamic order. Thus, 
specification of the observer rest on the specification of matrix 
�. Again, if we consider observer system S2 in altered form 
deduced as 

�̇(�) = ��(�) + ��(�),               (7) 

where �(�) is available (often through measurement) part of 
system state vector �(�) 

�(�) = ��(�),               (8) 

with constant matrix � , under the assumption of identity 
transformation employment within observation system, the 
same observation system can be written in form of 

�̇(�) = (� − ��)�(�) + ��(�).               (9) 

Any matrix �  leads to the observer system but the 
estimation dynamic of observer depends on the selection of 
matrix �  coefficients. For stable observation of unknown 
system state, eigen–values of observer system matrix (poles of 
observer) are often allocated to be proportionally negative 
semi–definite according to roots of free system. Convergence 
dynamic within observation of a free system state vector is 
upgraded and as a result, state vector of system is available for 
the purposes of e.g. control improvements in a form of optimal 
control law (2), [7]. 

III. MATHEMATICAL MODELS OF INDUCTION MOTOR AND 

LUNEBERGER OBSERVER 

LO belongs into category of deterministic observers 
because it is based on mathematical model of considered 
system. Base goal in this section is to describe the construction 
of LO for unknown states and rotor speed observation of IM in 
a purpose of performance improvements of IM sensorless 
drive. 

A. Mathematical model of induction motor 

Mathematical model of IM in stationary reference �� 
frame with stator current and rotor flux vectors as IM state 
vector is suitable for VU concept development. It is presented 
in extended matrix form as 

�
�̇�̇
��
̇
� = �

−(�� +
����

�

��
� )/�� −�

��

����
� (−1/�� + ���)

��/�� (−1/�� + ���)
� �
��
��

� +
�

��
�
��

�
�.   (10) 

which has a simplified form in state space as presented in (1), 
[8]. 

Stator current vector is also a measurable vector and as a 
part of IM state vector it can be written in shortened matrix 
form as 

��(�) = ��(�),              (11) 

where � = [� �] is 2�4 dimension constant matrix. 

Electromagnetic torque of IM in a form of vector equation 
is considered by 

�� =
�

�
�

��

��
(�� × ��).              (12) 

Complete mathematical model of IM is enclosed by adding 
the mechanical system differential equation which describes 
mechanical phenomena in IM. This is governed by 

�� − �� = ��
�

��
��, [8].              (13) 

B. Mathematical model of Luenberger observer 

According to the IM model attributes, complete model of 
LO for IM state observation in shortened matrix form is given 
as 

��̇(�) = ����(�) + ��(�) + �(�̇��−��),               (14) 

where variables with ^ represents observed variables from LO 
and matrices ��  and � represents LO system and LO control 
matrices with 4�4  and 4�2  dimension rate, respectively. It 
should be advised that, in general, those matrices do not have 
to fit in original to corresponding IM system matrices. 

It is shown in section II that the construction of LO 
observer when the system model is known rest on definition of 
matrix � , so called feedback action matrix. This matrix is 
multiplied with the stator current error vector and in summary, 
this has affect in the decrease in estimation error due to the 
mismatch in rotor speed or parameters values within IM and 
LO models. It is given in a form of 

� = �
��� + ���
��� + ���

� , � = �
1 0
0 1

�, � = �
0 −1
1 0

�,              (15) 

where ��, ��, �� and �� are coefficients of matrix �. 

In practice, the most common approach for designing the 
observer is to place the eigen–values of LO system matrix �� 
in proportional negative semi–definite correlation due to the 
roots of IM system matrix � where IM is a stable system for 
itself. In [5] it is proven that gain selection of matrix � which 
constitutes the observer system matrix has an influence on 
convergence dynamic of IM states. For stable and more robust 
estimation, matrix gains are chosen in a way of 
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�� = �� ,              (16) 

where � is coefficient of proportionality of IM and LO system 
poles. 

Due to the previous, matrix � gains are derived as 

�� = −(� − 1)(� + 1/��)               (17) 

�� = (� − 1)���               (18) 

�� = −(�� − 1)(�/� + �) + 1/�(� − 1)(� + 1/��)       (19) 

�� = −1/� ∙ (� − 1)���               (20) 

where � = (�� + ��
� /(����))/�� , � = ��/(����) and 

� = ��/��, [5]. 

Classical version of LO for IM drive assumes that the rotor 
speed is a variable parameter. In the essence of sensorless IM 
drives lies the Lyapunov function candidate governed by 

�(�) = ��� +
(������)

�

�
,               (21) 

where � represent error estimation vector and �  is a positive 
constant, [5]. 

If LO system matrix eigen–values are negative semi–
definite the proposed estimation algorithm will be 
asymptotically stable. Based on the equalization of first 
derivative of this criterion function with zero 

��(�)

��
= ��[(� + ��)� + (� + ��)]� − ���∆��� − ��∆��� +

  
�∆�

�

����

��
= 0,               (22) 

proposed speed observation is maintained when the sum of 
second, third and fourth term of the right side of (22) equals to 
zero. 

Solution of previous determines the adaptive mechanism 
for rotor speed estimation governed by 

��� = ∫
�

�
(�������� − ��������)��               (23) 

where � = ����/��, [5]. 

Thus, IM system is linearized and for better dynamic 
response of observed rotor speed, proportional term is added so 
block diagram of adaptive mechanism for evaluation of rotor 
speed has ultimate form presented in Fig. 1. 

 
 

Figure 1.  Adaptive mechanism for rotor speed estimation of IM 

Finally, block diagram of complete LO for observation of 
unknown states of IM and estimation of rotor speed is 
represented in Fig. 2. 

 

Figure 2.  Block diagram of proposed LO for observation of unknown IM 
states and rotor speed 

IV. DSP IMPLEMENTATION OF LUENBERGER OBSERVER FOR 

INDUCTION MOTOR 

VU concept of IM control and various complicated 
algorithms for estimation and observation within IM drives 
requires exclusively DSC–based systems for quality control 
implementation. Those systems implement the algorithm law in 
discrete–time sequences. Due to that, it is of crucial importance 
to discretize the continuous model (14) in the meaning of 
magnitude and time discretization methodology. Also, 
real time applications requires execution of control law in 
limited–time sequences so model normalization is required for 
the purposes of utilization of fixed–point calculation method 
that saves, in the most occasions critical, CPU time. 

First step for DSC realization of LO algorithm involves the 
method for normalization of state and control variables of IM. 
In case of a DSC implemented control of IM it is the most 
common practice to choose base state values to have maximum 
values which can appear in operation mode of IM drive. 
Motive for this comes from the fact that the problem of DSC 
registers saturation is then overcame. 

Next step involves time discretization where the most 
common approach is based on approximation method which 
implies the substitution of complex � variable with complex � 
variable of relevant system represented in complex plane. For 
simplicity, it is often used Forward Euler approximation of 
complex � variable with � variable in the form of 

� → (� − 1)/�               (24) 

where �  represents sample period which matches the PWM 
rate period. In the case of simulation and experiments of 
considered drive described in the next section, value of sample 
period correspond to the PWM frequency of 8 ���. Therefore 

� = ���� = 125 ��.               (25) 

Third and final step of adapting the model (14) for DSC 
realization is based on magnitude discretization problem. 
Analog–to–Digital DSC unit automatically converts analog 
signal to digital. 
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Applying these three steps into LO continuous model (14) 
in complex plane (time derivation of state vector is substituted 
with complex variable s), discrete equations are obtained like: 

��
∗(��) = ������

∗(�� − �) + (���� − �������
∗)��

∗(�� − �) +
����

∗(�� − �) + �(��
∗ + ���

∗)(��
∗�(�� − �) − ��

∗(�� − �)) (26) 

��
∗(��) = [���� + �������

∗]��
∗(�� − �) + ������

∗(�� − �) +
�(��

∗ + ���
∗)(��

∗�(�� − �) − ��
∗(�� − �))               (27) 

where ���� = 1 − ��� �
��

��
+

��
�

��
�

��

��
� , ���� = ���

��

��

��

��

�

��
, 

���� = ����
��

��

�

��
, ���� = �����

��

��
, and ���� = 1 − ���

��

��
. 

For calculation of (26) and (27) it is necessary to determine 
the values of motor parameters. One of the basic ways for 
extracting the parameter values from IM is through IM 
experiment at no–load and short–circuit state, [2]. 

In Table I parameter values of used IM are shown. 

TABLE I.  IM PARAMETER VALUES 

RS [Ω] Rr [Ω] Ls [H] Lr [H] Lm [H] 

3.26 1.05 0.078 0.078 0.074 

V. SYSTEM CONFIGURATION 

Whirlpool three–phase IM (Maytag Whirlpool Factory 
Washer Motor W10171902 J58GTC–1132) is controlled via 
DSC MC56F8245 of FreeScale manufacturer which generates 
pulses with variable filling factor (PWM–pulse width 
modulated) to “GATE DRIVER” block that drives inverter. 
Vector control algorithm is implemented in DSC module. 
Measured variables are stator current from shunt in inverter DC 
circuitry and rotor shaft speed from tacho generator. In case of 
LO, reconstructed stator currents are used for feedback action 
and utilized in adaptive mechanism for estimation of rotor 
speed. In that case, measured rotor speed serves only for 
system monitoring purposes. Interface between the user and 
drive system is, in the manner of programmability and control 
management sense, implemented through serial link. Fig. 3 
represents simplified block diagram of digital VU IM 
sensorless drive. 

 

Figure 3.  Simplified block diagram of IM drive 

VI. SIMULATION AND EXPERIMENT 

A. Simulation analysis of induction motor drive 

Simulation analysis of LO algorithm performance within 
considered drive from Fig. 3. were implemented in 
Simulink tool of MATLAB software. Estimation results within 
basic observer modes such as open–loop and closed–loop 
modes were presented as well as the influence in discrete 
calculation methodology. Simulation analysis were performed 
at no–load condition of considered IM. 

Observation responses of IM and continuous LO states in 
open–loop mode (pure rotor flux observer where rotor speed is 
measured and used from sensor) are presented in Figs. 4 and 5 
at rotor speed references of 500 ��� and 2500 ���. 

From Figs. 4 and 5 it is noticeable the match of 
corresponding ��  components of IM and LO states. From 
subplots in Figs. 4 and 5, blue– (correspond to ���

∗  from upper 
and ���

∗  from lower subplot) and green– (correspond to ���
∗  

from upper and ���
∗  from lower subplot) colored graph 

components coincide the corresponding red– (correspond to ���  
from upper and ���  from lower subplot) and yellow– 
(correspond to ���  from upper and ���  from lower subplot) 
dotted graph components. States with * represents observed 
states from LO. 

 

Figure 4.  Current (upper subplot) and flux (lower subplot) responses of IM 
and continuous open–loop LO in �� frame, speed reference 500 ��� 

 

Figure 5.  Current (upper subplot) and flux (lower subplot) responses of IM 
and continuous open–loop LO in �� frame, speed reference 2500 ��� 

Observation responses of IM and discrete LO states in 
open–loop mode (rotor flux and speed observer where rotor 
speed is evaluated from adaptive mechanism, Fig. 1) are shown 
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in Figs. 6 and 7 at rotor speed references of 500 ���  and 
2500 ���, respectively. 

 

Figure 6.  Current (upper subplot) and flux (lower subplot) responses of IM 
and discrete open–loop LO in �� frame, speed reference 500 ��� 

Comparison of responses from Figs. 6 and 7 to the 
responses from Figs. 4 and 5 at identical simulation conditions 
shows bad influence of discrete calculation approximation 
method based on (24) to the observation of IM states. Proper 
magnitude as well as the phase loss of LO states particularly 
noticeable at higher speed reference values are repercussions 
from discrete equation utilization (26)–(27) within LO 
algorithm. 

 

Figure 7.  Current (upper subplot) and flux (lower subplot) responses of IM 
and discrete open–loop LO in �� frame, speed reference 2500 ��� 

Responses of discrete LO states at closed–loop mode are 
similar to those at open–loop mode. 

One of the solution for fixing the problem of magnitude and 
phase loss of LO state includes the use of feedback action 
within LO via stator current vector error. 

Feedback action within LO inquires the use of non–zero 
gains of feedback action matrix G. If coefficient � from (16) is 
set on the value which differs from one than feedback is 
included in LO algorithm. It is often convenient to select this 
value to be greater than one mainly because the observation 
response converges faster to the stationary state of observation 
system. 

Figs. 8 and 9 represents the observation responses of IM 
and discrete LO states in open– and closed–loop modes of LO 
algorithm with implemented feedback action at rotor speed 
reference of 2500 ���, respectively. 

 

Figure 8.  Current (upper subplot) and flux (lower subplot) responses of IM 
and discrete open–loop LO in �� frame with implemented feedback action 

� = 3, speed reference 2500 ��� 

It is obvious from previous Fig. that the implementation of 
feedback within LO algorithm greatly reduces the magnitude 
and phase error between IM and observed LO states. In closed–
loop mode coefficient � from (16) is set at value smaller than 
one, � = 0.5, because of stability issue disruption problem. 

 

Figure 9.  Current (upper subplot) and flux (lower subplot) responses of IM 
and discrete closed–loop LO in �� frame with implemented feedback action 

� = 0.5, speed reference 2500 ��� 

Compare to the Fig. 7, it is clear from Fig. 9 that feedback 
action decrease the estimation error of observable states due to 
IM states but, compare to the Fig. 8 this correction has much 
smaller effect. Main reason lies in fact that feedback action 
matrix gains (17)−(20) are rotor speed–dependent. Rotor speed 
signal is estimated from adaptive mechanism (23). Discrete LO 
calculation method based on LE approximation has an inherent 
problem due to the appearance of observation error. Such 
erroneous states are utilized in adaptive mechanism and the 
aftermath is the inaccuracy of estimated speed signal (see 
Fig. 10.) and error accumulation problem in observation 
algorithm. Drawback of gain selection method based at 
(17)−(20) in closed–loop mode of LO is that the observer 
feedback action cannot drive the observation error to zero 
which affects the dynamic performance response and also 
stability in sensorless drives especially at high speed region. 

Fig. 10 represents the rotor speed response from IM and 
adaptive mechanism implemented within LO (upper subplot) 
and also zoomed to the steady state condition (lower subplot), 
rotor speed reference value 2500 ��� . PI regulator gains 
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within adaptive mechanism were set at values �� = 30  and 
�� = 60. 

 

Figure 10.  Speed responses from IM and adaptive mechanism within LO 
(upper subplot) and zoomed to the steady state conditions (lower subplot), 

speed reference 2500 ��� 

B. Experimental analysis of induction motor drive 

Validation of examined simulation results is given through 
appropriate experimental tests on subscribed IM drive, section 
V. Analysis are carried at identical no–load conditions of IM 
drive like in case of simulation tests. 

 

Figure 11.  Current (upper subplot) and flux (lower subplot) responses of IM 
and discrete closed–loop LO in �� frame, speed reference 2500 ��� 

 

Figure 12.  Current (upper subplot) and flux (lower subplot) responses of IM 
and discrete open–loop LO in �� frame, speed reference 2500 ��� 

Fig. 11 shows the experimental responses of stator current 
and rotor flux of IM and discrete closed–loop LO at speed 
reference 2500 ���.  It should be advised that IM flux is 
derived from MRAS estimator which is also performed in 

specified software for control management of considered drive. 
States with * represents observed states from LO. All variables 
from Fig. 11 are in relative domain and represented as fixed–
point variables like in DSP registers. 

The similar behavior at identical operating conditions is 
obvious from Figs. 7 and 11. The same statement valid at open 
loop mode of LO with feedback action � = 3. Fig. 12 confirms 
that conclusion. 

Feedback action in closed–loop mode was not implemented 
because of critical stability issue of considered system. 

VII. CONCLUSION 

Performance evaluation of LO based sensorless method for 
IM is introduced in this paper. It is shown that discrete 
calculation method based on (24) and performed within LO 
algorithm has dominant effect on the accuracy of IM state and 
rotor speed observation. Drawback of the LO model 
approximate implementation algorithm (26)–(27) is the 
occurrence of degradation in both magnitude and phase of LO 
states to the IM states with greater effect at high speed region. 
Proposed method which includes the use of feedback law 
within LO is proven to be suitable in open–loop mode 
Therefore, LO can be used as robust flux observer for IM drive 
performance improvements because it cancels bad effect of 
loss in magnitude and phase of observed LO states due to the 
IM states. In closed–loop mode where rotor speed is estimated 
in addition to the observed states, it is proven that feedback 
action did not cancel this effect. Actually small improvements 
in observation are conducted in that case and that is the main 
reason why this construction of LO is not suitable for appliance 
in high performance IM drives at wide speed range. Finally, the 
significant similarity is shown between simulation and 
experiment tests of considered IM drive. 
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