
Simple Arcade Game from Hardware Side using

MicroBlaze

Milan Tucic, Ivan Kastelan

University of Novi Sad, Faculty of Technical Sciences

Novi Sad, Serbia

milan.tucic@rt-rk.com

Dragan Topalovic, Milos Nikolic

RT-RK Institute for Computer Based Systems

Novi Sad, Serbia

Abstract— This paper proposes reconstruction of the simple

arcade game Pong using MicroBlaze soft core and explains

hardware side of this process. Reconstruction is split into two

time phases. In the first phase hardware is developed with

functionalities which, as they are, are sufficient for game

implementation. This means hardware part of system is made of

simple graphic controller and paddle movement controller. The

second phase covers system analysis and hardware made as a

result of this analysis. All upgrades are done considering

MicroBlaze’s flexibility. This kind of approach and organization

leads to better balance between hardware and software

implementation, and demonstrates advantages of designing a

system in which it is possible to monitor, analyze and influence

the further evolution of the system.

Keywords-game; hardware; microblaze; pong; vhdl

I. INTRODUCTION

FPGA configured by some Hardware Description
Language (HDL) provides simple and fast development of
complex digital circuits and systems. Developers have accepted
this approach, which has led us to a lot of examples and
solutions that we have today. Using them, development is
easier, more flexible and it is giving additional time for
research, rather than creating system from a scratch.

Good example of available solutions today is the Xilinx
Embedded Development Kit (EDK), including Intellectual
Property Catalog (IP Cores) and the MicroBlaze embedded
processor soft core (MicroBlaze) with a reduced instruction set
computer (RISC) architecture optimized for implementation in
Xilinx Field Programmable Gate Arrays (FPGAs) [1].

Ke, Eric and Winston [2] were using this solution, while
working on a student project of reconstructing Pac-Man game.
They split the project into software and hardware
programming, and with little effort on software side they got
reduced complexity on hardware side. Game logic includes
collision detection, scoring and enemy artificial intelligence
(AI) and it is implemented using the MicroBlaze. Hardware
configuration is described in Very Large Scale Integration
HDL (VHDL), and it implements graphics engine with sprites
and paddle control over the MicroBlaze UART IP Core.

As one of the earliest arcade video games, Pong game is
used as referent simple arcade game in this paper. It has simple
game logic and two-dimensional graphics. While other arcade
video games, such as Computer Space, came before it, Pong

was one of the first video games to reach mainstream
popularity. It is a multiplayer tennis like game, where the goal
is to defeat an opponent by earning a higher score. The game
was originally manufactured by Atari Incorporated (Atari),
who released it in 1972.

Armandas [3] has done full reconstruction of the Pong
game in VHDL. He used Nintendo Controllers as an input
device for paddle control. Ball and paddle objects are
represented by graphics stored in memory, separated of text
symbols which are used for text generation. Logic for game,
which includes ball movement and paddle movement has also
been implemented in VHDL.

This paper proposes an approach to accelerate drawing of
graphics with hardware-based drawing using VHDL,
MicroBlaze and IP Cores, suitable for reconstruction of the
simple arcade game Pong [4] as one of the earliest arcade video
games. VGA Controller handles communication with VGA
screen and it is combined with modules for text generation and
graphics memory. Game logic (scoring, ball and paddle
movement) is handled by MicroBlaze. Paddle control has been
done initially over the UART IP Core, but has changed (after
system analysis) to less robust Joy Peripheral. This kind of
approach brought additional time for modifications to graphics
memory and this system module was upgraded with hardware
sprites.

The rest of the paper is organized as follows: section 2
gives the overview of the proposed system. Section 3 explains
graphics modules and first approach for paddle movement.
Section 4 explains modifications done after system analysis.
Section 5 gives results of the proposed approach implemented
on Pong game. Finally, section 6 gives some concluding
remarks and plans for future research.

II. SYSTEM OVERVIEW

This paper recommends Embedded Engineering Learning
Platform (E2LP) [5] as a platform for research projects based
on FPGA. The E2LP provides an advanced hardware platform
that consists of a low cost Spartan-6 Platform FPGA
surrounded by a comprehensive collection of peripheral
components that can be used to create a complex embedded
system. Additionally, software IDE is developed to support
usage of the board. In this paper Spartan-6 is used for VHDL
configuration, movement control is done over joy buttons and

This work was partially supported by the Ministry of Education, Science
and Technological Development of the Republic of Serbia, under grant no.

TR32030, year 2011-2015

X International Symposium on Industrial Electronics INDEL 2014, Banja Luka, November 06�08, 2014

185

Figure 1. E2LP with MicroBlaze System and Joy Buttons

Figure 2. Image Process on VGA Screen

VGA controller is using VGA connector for connection to a
VGA monitor.

The central figure of the proposed system implemented on
the E2LP is the MicroBlaze - soft 32-bit RISC processor.
MicroBlaze [1] is implemented with Harvard memory
architecture. Separate address spaces for instruction and data
accesses are used. Both instruction and data interfaces of
MicroBlaze are 32 bits. There is no separate access to I/O and
memory (it uses memory mapped I/O). This system for Block
RAM (BRAM) memory accesses uses Local Memory Bus
(LMB) and Processor Local Bus (PLB).

Software programming is not described in this paper, but it
is done in “C” programing language on MicroBlaze. Every
peripheral has driver with functions that are important to them.
Some functions were just abstraction of peripheral’s native
functionalities, but there were also functions with extra
algorithms like object drawing. For accesses to peripherals
AXI4-Lite IP Interface (AXI Lite) is used (Fig. 1).

III. PHASE I

This time phase of system evolution presents hardware with
functionalities which, by themselves, are sufficient for game
implementation. That means in this phase hardware is made of
a graphics controller and a controller for paddle movement.
The rest of the system, implemented in this phase, including
scoring, ball and paddles drawing is implemented on
MicroBlaze. Everything done here, will serve as a referent
point for the phase II.

A. VGA Controller

VGA standard represents an easy way of forming images
on the screen. An image is formed by placing successive pixels
of the corresponding color, which are always placed from the
relative position (0, 0) until the end of the starting line (in the
case of 640x480 screen, it is pixel at position (0, 639)), when
switching to the next line and so on until the end (in the case of
640x480 screen, it is pixel at position (479, 639)) (Fig. 2).

VGA interface defines 4 digital and 3 analog signals.
Digital signals are used for synchronization and positioning.
The end of setting a single screen line is signalized by a
horizontal synchronization signal (hsync). Vertical
synchronization signal (vsync) is signalizing the completion of
setting the entire image on the screen. Signals for positioning
are indicating which row and column are going to be set on the
screen. Analog signals are used to determine the color which is

going to be displayed at a given position. The color is formed
by combining the illumination intensity of three RGB format
components. The intensity of each color is represented by 8
bits; hence each pixel on the screen is represented by 24 bits.

Screen content control relies on modules for text printing,
graphics memory and set of registers. Using “pure” VGA
controller directly with signals described above is complicated
and it is not recommended. Because of that, these three
modules were implemented to abstract VGA controller, and
give simplified control for screen content.

1) Text Printing: Printing text on the screen is based on

addressing a specific symbol from the BRAM memory. The

BRAM memory contains predefined values as symbol

representation for each symbol from a set of given symbols.

Symbols are defined as 8x8 binary values. Giving symbol

address, current row and column, module generates screen

output value (Fig. 3). This module organizes screen in

partitions. One partition is representing 8x8 pixels from the

screen. Memory word stores address of a symbol and it maps

one screen partition. This means it is only possible to set

symbol to fit one of these partitions, not to a random position.

2) Graphics Memory: Graphics memory is used as an

extra layer for printing desired values on the screen. The

words in this memory are 32 bits wide and represent 32

successive pixels on the screen. Successive locations in

memory are mapped to successive positions on the screen. At

the end of each line of the screen, the memory locations wrap

to the beginning of the next line. Graphics memory is accessed

every time when value for the current position on screen is

requested (also as text memory). Each of bits indicates which

of the two predefined colors will be chosen for current point

position. This kind of organization leads to easy screen

content control, and everything is executed from MicroBlaze.

Also, VGA controller generates interrupts which are processed

186

Figure 5. Project Results after Phase I

Figure 4. VGA Peripheral – Phase I

Figure 3. Text Module

by LogiCORE™ IP AXI Interrupt Controller (AXI INTC).

These interrupts could be used as the clock for screen content

refreshment (Fig. 4).

3) Registers: Some of the values for graphics modules are

stored here. They define graphical mode, border line and

colors (foreground, background and border). Registers for

graphical mode determine whether the memory for both

modules forms a picture, or the memory for just one module.

Border line refers to the whole screen border and it can be set

or not. This module is also accessible from MicroBlaze, and

register content can be controlled from there.

B. Paddle Movement Controller (PMC)

The system uses the LogiCORE™ IP AXI Universal
Asynchronous Receiver Transmitter Lite (UART Core) [6] to
redirect commands from keyboard to the MicroBlaze. UART
Core provides interface between UART signals and the
Advanced Microcontroller Bus Architecture (AMBA) and also
provides a controller interface for asynchronous serial data
transfer. UART Core is enabling usage of keyboard buttons,
but they must be filtered for reaction on specific buttons. In this
case “S” and “K” keyboard buttons are used to move paddles
up, and “X” and “M” buttons are used to move paddles down.
This process is handled from MicroBlaze.

IV. PHASE II

The first phase concentrated on implementation of the basic
Pong game. In the second phase, which is the main
contribution of this paper, Pong was reconstructed using
MicroBlaze and IP Cores as representative solutions for

systems based on FPGA with the goal of accelerating the
graphic processing and a broader usage of E2LP platform to
make playing more user-friendly. Functionalities are
implemented from both software and hardware sides. Phase II
upgrades the system (Fig. 6), based on comparison to the
similar systems and directly comparing software with hardware
from phase I (Fig. 4).

A. Joy Peripheral

Joy Peripheral (Fig. 7) holds PMC functionality and logic

that is easy to handle. It controls signals from E2LP Joy

buttons (Fig. 1). For purpose of this system implementation

two instances of Joy Peripheral are used, controlling signals

from buttons JOY1 and JOY4 (for up paddles direction) and

JOY0 and JOY3 (for down paddles direction). Paddle control is

based on Joy Peripheral interrupts handled from MicroBlaze.

Interrupts are triggered at the moment when peripheral state is

changed, and this depends on signals coming from JOY

buttons.

Three states are defined, and here is an example for one

instance:

1) UP: Peripheral state UP is set when button JOY1 is

pressed, but JOY0 is not pressed.

2) DOWN: Peripheral state DOWN is set when button

JOY0 is pressed, but JOY1 is not pressed.

3) IDLE: Peripheral state IDLE is set in cases which are

not defined in 1 and 2.

After interrupt happens, defined state register holds current

peripheral’s state. Accessing to this register from MicroBlaze,

paddle position on the screen can be updated.

B. Hardware Sprites

In the phase I object drawing is done by setting values that
represent objects to graphics memory; every time when object
changes its position graphics memory must be updated. This
kind of approach has complex processing which must be
provided by the MicroBlaze, particularly because memory
architecture (32-bit words) for graphics memory is not ideal for
setting object of any size to random position. Also, simply
setting two objects to the same memory word will result in
overwriting the first of these two. Because of this behavior,
software side must handle this relatively complex situation.

In early video gaming, hardware sprites were a method of
compositing separate bitmaps so that they appear to be part of a
single image on a screen. Simple arcade games often work with
predefined graphics objects, which fully meet the definition of
hardware sprites. It enables much easier screen content control
and that is the reason why they are implemented here. In
contrast to the full control of an object drawing, which must be
provided from the MicroBlaze, this kind of approach
dramatically reduces effort on software side. All that is
necessary is to fill the memory with sprite bite representation
and then control them by setting starting pixel’s position. This
process is similar to text printing described in section 3, only it
has better resolution defined with 4x4 pixels partitions and it
uses blocks to represent one sprite. Block is defined by number
of cells in row and column. For example, block for ball sprite
contains 4x4 partitions (16x16 pixels). Sprite memory is

187

Figure 6. VGA Peripheral – Phase II

Figure 7. Joy Peripheral

representing sprites on the screen. While writing to this
memory, it is necessary to provide starting address from
BRAM memory for current sprite and number of rows and
columns (cells) occupied with this sprite.

Sprites implemented here are not static. Sprite can be
rotated and shifted to create simple animations effect. This
procedure uses sprite bite representation and modifies output
depending of function demanded.

Supported functions are:

1) Rotation: Using original sprite, simulates rotation for

90, 180 or 270 degrees.

2) Shifting: Shifts original sprite for the given number of

bits.

V. RESULTS

PMC over UART Core, described in section 2 (also

proposed by Ke, Eric and Winston [2]) is large overhead for

this kind of systems. Paddle movement is controlled with 4

buttons and it is unnecessary to include whole UART Core for

that. After comparing PMC from section 2 with Armandas’s

[3] Nintendo Controllers, it was clear that it is better to have

simple peripheral for PMC. Also, comparing to Armandas,

including peripheral to MicroBlaze is much easier than

creating new peripheral for system proposed by Armandas.

Very important fact is that peripheral in that kind of systems

must be considered from the beginning. Adding features like

this in the middle of project progress can be very complex (or

impossible), which is not case with system that proposes this

paper.

Graphics memory seems to be sufficient from the

beginning, but after increased effort needed on software side it

was clear that extra abstraction layer for graphics

functionalities is necessary. Hardware Sprites were good

solution, and this is confirmed by results of measuring

execution time needed for drawing objects in phase I and

phase II (Table I). Drawing object, in phase I, depends of

object position, so execution time is not always the same. For

this case, time in table I represents average value from 1000

samples of the same object drawing. In phase II there are no

variations like in phase I; every sample within 1000 lasts

equally. Phase II extremely reduced execution time compared

to phase I in object drawing.

Extra features are also included to hardware sprites. It is

possible to create simple animations, gaining user experience

with rotation and shifting functionalities. Approach proposed

by Armandas uses multiple sprites to represent different states

of an animation (also possible here). Comparing to this

approach, there is no need to store manually every image

necessary for an animation, but they can be used only for

simple animations.

TABLE I. OBJECTS DRAWING COMPARISON

Execution time

Phase I Phase II

Ball 6804 ns 7 ns

Paddle 7785 ns 7 ns

VI. CONCLUSIONS

The advantage of using MicroBlaze as a representative

solution is the design flexibility during the progress of the

system development. System’s modules which require a lot of

effort to be done by processor (software part of a system) can

be reduced with hardware implementation of certain

functionalities. Also, hardware modules of a system can be

modified and their evolution brings better experience and

easier development to the rest of the system. Choosing

platform for research is also important. E2LP has wide range

of peripherals and it is possible to use them to improve a

system.

In the future research, system will be further improved to

become a framework to support simple game generally, not to

be bound to Pong game. Rotation will be considered to

support any degree set. Also, more functionality for hardware

sprites will be considered.

REFERENCES

[1] Xilinx, Inc., MicroBlaze Processor Reference, Guide UG984 (v2014.1),
April 2, 2014

[2] Ke Xu, Eric Li, Winston Chao, “Pac-man final project report”,
University of Columbia, July 4, 2014

[3] Armandas Jarusauskas, “FPGA based VGA driver and arcade game”,
University of Sussex, 2009/2010

[4] Pong game, www.ponggame.org (accessed: August 10, 2014)

[5] I. Kastelan, N. Teslic, M. Temerinac: “E2LP: An Embedded
Engineering Learning Platform”, IT System Conference 2013, pp. 1-4

[6] Xilinx, Inc., LogiCORE IP AXI UART Lite v2.0 Product Guide PG142,
April 2, 2014

[7] Pong P. Chu, “FPGA prototyping by VHDL examples”, John Wiley &
Sons, Inc., 2008

188

