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Abstract— The proposed override control system consists of 

two anti-reset windup controllers, common actuator and a 

limiter, surrounded by pre and post biproper filters. Pre-

filter is inverse of the post-filter. The desired limit on the 

override variable and its set-point are defined by output of 

the limiter. Signal selector is not applied in the proposed 

structure. Other characteristic feature of the proposed 

solution, compared to standard one, is that the override 

variable response is obtained practically without 

overshoot. Procedure for adjusting parameters of the post-

filter are defined and illustrated in detail. Simulation 

results are used to demonstrate the basic ideas. 

Experiment on a laboratory thermal plant with noisy 

measurements is used to confirm validity of the proposed 

solution. 

Keywords-PID control; Override control; Constraints; 

Dead-time compensation; Tuning 

I.  INTRODUCTION  

In many cases the number of variables to be controlled is 

higher then the number of manipulated variables. Override and 

cascade control are commonly applied to solve this control 

problem at the regulatory control level. In the present paper a 

new, effective solution for override control system design and 

tuning is proposed and experimentally verified. 

In override control, one variable is a primary controlled 

variable yp and have to be maintained at a given reference 

value rp (or close as much as possible), but in such way that 

the override variable yo had to be limited to a value ro, defined 

in [1] as the soft constraint.  

Block diagram of a standard override controller is presented 

in Fig. 1. Actuator output w is used as external reset feedback, 

common to both anti-reset windup controllers Cp and Co. Two 

controller outputs are connected to a signal selector (min or 

max). The controller demanding higher or lower actuator 

output w will override the other. In the normal operating 

regime, this controller is the primary one, Cp. Stability of this 

standard override control system is considered in [2]. 
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Figure 1. Block diagram of a standard override control system: primary 

controller Cp and override controller Co connected to the common actuator AC 
trough the min/max selector. 

Suppose that primary yp and override yo variables are 

defined by yp=Gpw and yo=Gow, where Gp and Go are some 

process transfer functions.  It is adopted that the selector in 

Fig. 1 is of a min type. In this case, when override variable yo 

approaches closely to its limit ro, then output signal uo 

decreases. When it drops below the primary controller’s 

output up, it is selected as actuator input u. This means that the 

controller Co overrides the primary controller Cp, as 

demonstrated in Fig. 2 for the example with process transfer 

functions Gp and Go defined by:  
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and anti-reset windup PI controller used for the primary 

controller Cp and override controller Co, defined in Section 2. 

The basic problem with the override control in Fig. 1 is the 

overshoot in yo response following the set-point rp change.  

This is demonstrated in Fig. 3, for the above example defined 

by (1) and Fig. 1.  

Appearance of overshoot in Fig. 3 reduces performance of 

override control. This conclusion follows from the fact  that 

the override set-point ro (soft constraint) has to be set 

sufficiently far from the interlock trip point, denoted in [1] as 

the hard constraint. 
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In the present paper a new structure of the override control 

system is proposed in Section II. It enables to solve efficiently 

the above overshoot problem in the case of set-point rp change 

as well as in the presence of disturbances.  
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Figure 2. Control signals up (dashed), uo (dotted) and resulting u (solid) of 

override control system in Fig. 1, with selector of a min type. 
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Figure 3. Set-point (dashed) and process output (solid) responses of override 

control system in Fig. 1. Standard override controller Co can not prevent 

appearance of overshoot in the override variable yo. 

Design and tuning of the proposed override control system is 
presented in Section III. Then, for a laboratory thermal plant 
with noisy measurements, in Section IV the basic ideas are 
illustrated by simulation, and experimental results are used for 
final verification. 

II. PROPOSED STRUCTURE 

The proposed override control system is presented in Fig. 4. 

The characteristic feature of the proposed structure is the 

limiter surrounded with a biproper post-filter and its inverse, a 

pre-filter. Polynomial A2(s) is given by A2(s)=a2s
2
+a1s+a0, 

Fn(s)=1/(Tis+1)n is an nth order low-pass filter, n≥1, and L is a 

design parameter [3,4]. The same structure is used for the 

primary controller, with Fr(s)≡Fn(s). Obviously, first-order 

filter Fn(s) can be applied for a2=0, as in Table I. 
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Figure 4. Proposed override control system: primary controller Cp and 

override controller Co connected to the common actuator AC. Inside limits 

u(t)≡up(t) and override controller Co is inactive. Fr(s) is a biproper post-filter 

with Fr(0)=1. 

The proposed mechanism is simple and obvious. As the pre-

filter is used to be inverse of biproper post-filter, inside limits 

one obtains u(t)≡up(t) since the action of the override 

controller Co in Fig. 4 is cancelled. When the set-point ro(t) 

reaches the limit, the connection relating primary controller to 

actuator is broken and override controller Co is active with set-

point defined by a desired limit.  

The proposed structure is applied to the above example (1). 

To demonstrate advantages of the proposed override control 

system, the same PI controllers (a2=0, L=0, n=1) are used in 

the standard override control system, with results presented in 

Figs. 2-3, and in the proposed structure, used to obtain results 

in Fig. 5.  Parameters of PI controllers are given in Table I.  
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Figure 5. Set-point (dashed) and process output (solid) responses of the 

proposed override control system in Fig. 4. Dot line presents the desired limit 

for yo. 

TABLE I.  PARAMETERS OF APPLIED PI CONTROLLERS  

Controller a0 a1 Ti 

Override 0.5 2.5 5 

Primary 1.25 1.25 0.5 

 

Results presented in Fig. 5 confirm that the desired limit is 
almost strictly satisfied, by using the proposed override control 
system and the post-filter tuning derived in the next section. 
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III. DESIGN OF THE POST-FILTER 

Assume that both controllers in Fig. 4 are tuned to satisfy 
some desired performance/robustness trade-off, for a given 
dynamic process characterization yp=Gpw and yo=Gow defined 
by transfer functions Gp and Go. This means that the post-filter 
Fr(s) in Fig. 4 is designed assuming that Go  and controllers Cp 
and Co are known. 

Set-point response of yo is defined by transfer function  
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for Fr(s)≡1. To obtain fast set-point response of yo without the 

overshoot, the ideal form of the post-filter is obtained as the 

inverse of Gro(s). However, this implementation is not always 

possible, and it is proposed to use a rational function 

approximation of Gro(s). Since Gro(0)=1, this approximation is 

given by 
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Coefficients of polynomials C(s) and D(s) are determined by 

minimizing the following criteria 
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performed through iterations, for D0(iωk)≡0 and Ω∈
k

ω , 

{ }
K

ωωω ,...,,
21

=Ω , where Ω is a set of frequencies in the 

desired range. It should be observed that from (4) one obtains 

Gro(iωk)≈(1+CN(iωk))/(1+DN(iωk)) for Ω∈
k

ω , as required by 

(3), since for m=N it follows Dm-1(iωk) ≈Dm(iωk).  

Poles and zeros of (1+CN(s))/(1+DN(s)) in the left half s-

plane, close to the imaginary axes, are used to approximate 

dominant dynamics of Gro(s). Right Half s-Plane (RHP) zeros 

are excluded. Then, the biproper post-filter Fr(s) is designed as 

the inverse of dominant dynamics of Gro(s). To obtain the 

biproper post-filter Fr(s) in the form     
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some additional zeros (Tzs+1)
g
, defined by time constant Tz 

and order g, have to be included in polynomial 1+Br(s), to 

obtain the same order m of Br(s) and Ar(s) in (5). Further 

details will be demonstrated here and in the next section. 

For the example (1), the following approximation of Gro(s) 

is obtained from (4): 
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The biproper post-filter Fr(s), with time constant Tz=0.5 s, 

adopted as a trade-off between the performance and the high-

frequency gain Fr(∞), is given by 
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IV. SIMULATION AND EXPERIMENTAL RESULTS 

A laboratory thermal plant, with noisy measurements, is 

used to demonstrate in detail the basic ideas and properties of 

the proposed solution and to verify experimentally the validity 

of the override control system in Fig. 4. In this section, DTC-

PID controllers [3,4] are used as primary and override 

controller in the proposed override control system. 

The plant is presented in Fig. 6. The temperature T(x,t) of 

aluminum plate, long l=0.1 m and wide h=0.03 m, is measured 

by precision sensors LM35 (TO92) at positions x=0 and x=l. 

The plate is heated by terminal adjustable regulator LM317 

(TO 220) at x=0. The input to the heater is the manipulated 

variable w(t), obtained from the saturation element with limits 

llow=0% and lhigh=100% [4]:  
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The primary controlled variable is yp(t)=T(l,t) [
°
C], while 

measurement at the position x=0 of the heater is used as the 
override variable yo(t)=T(0,t), to keep the temperature T(0,t) 

below 59 °C. 

 

Figure  6. Laboratory thermal plant: 1- heater, 2- sensor at x=0, 3- sensor at x=l. 

For the nominal regime, defined by the T(l,t)≈50 
o
C, the 

open-loop system responses of both outputs yp(t) and yo(t), 

obtained by applying a PRBS signal w(t), are used to 

determine 100
th

-order ARX models, approximated then with 

the following models yp=Gpw and yo=Gow:  
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Both DTC-PID controllers are defined by the structure of 
the override controller in Fig. 4, with Fr(s)≡Fn(s) used in the 
primary controller, as in [4]. In both controllers fourth-order 
filter Fn(s)=1/(Tis+1)

4
 is used. Parameters of DTC-PID 

controllers in Table II are obtained by optimization under 
constraints on the robustness and sensitivity to measurement 
noise [4]. 

TABLE II.  PARAMETERS OF APPLIED DTC-PID CONTROLLERS  

Controller a0 a1 a2 Ti L 

Override 14.276 265.983 1649.6 2.2191 0.1493 

Primary 10.906 730.446 12785 5.0806 17.569 

 

The following approximation of Gro(s) is obtained from (4): 
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Frequency responses of Gro(s) in (2) are used to define the 

desired range of frequencies Ω∈
k

ω . It is proposed to use set 

of frequencies where amplitude characteristic of Gro(s) is 

greater than -60dB. Frequency responses of Gro(s) in (2), and 

its approximation (8), are presented in Fig. 7.  

Filter Fr(s) is obtained by applying design procedure (4)-(5) 

and taking into account only dominant poles and zeros of 

approximation (8). RHP zero s=4.576 and non-dominated pole 

s=–2.167 are neglected. Then, RHP zeros defined by 

( 15.14737.02
+− ss )=0 are neglected, and this term is 

replaced with ( 17 +s )
2
 to obtain biproper Fr(s) defined by: 
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Time constant Tz=7 s is adopted as a trade-off between the 

performance and high-frequency gain, to obtain Fr(∞)≈3 as in 

the previous example with responses presented in Fig. 5. 

Simulation of the laboratory thermal plant is performed 

first, by applying models Gp(s) and Go(s) in (7) in the loop 

with the proposed override control system defined by Fig. 4, 

Table II and post-filter (9).  

Results of this simulation, presented in Fig. 8, are obtained 

as follows. Limit for yo(t) is set to romax=6.5 
o
C. A band-

limited white noise is added to both variables, yp(t) and  yo(t). 

It is obtained from a band-limited white noise generator, with 

power PSD=0.0015 and cut-off frequency ωC=π/0.5 rad/s. 
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Figure 7. Frequency responses of Gro(s) (solid) and its approximation 
(1+C(s))/(1+D(s)) (dashed), obtained for p=q=6 in (3).  

A step set-point rp(t) of amplitude 5 0C  is activated at t=100 

s. The set-point ro(t) is generated, followed by the override 

variable yo(t), regardless the fact that the override controller is 

inactive until ro(t) becomes equal to the desired limit. When 

ro(t) becomes equal to the desired limit, action of the override 

controller provides that the desired limit on override variable 

is strictly satisfied, as demonstrated in Fig. 8a.  

To illustrate performance of the proposed override control 

system in the presence of an unmeasurable load disturbance, a 

−5% step change of the control variable is inserted at time 

t=600 s and deactivated at t=1000 s.  

Results of experimental verification of the proposed 

override control system in the loop with the real laboratory 

thermal plant are presented in Fig. 9. As in the simulation, set-

point change of the primary variable equals 5 oC, from the 

nominal value of 45 
o
C.  

In this case, limit on yo(t), given by romax=59 
o
C, and the new 

operating point are adjusted to demonstrate performance of the 

proposed override control in the vicinity of the desired limit. 

In the presence of unmeasurable disturbances, the desired 

override limit is not exceeded due to fast reaction of the 

override controller, as demonstrated in Fig. 9a.   
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Figure 8. Closed-loop simulation of the laboratory thermal plant, models Gp(s) 

and Go(s) in (7) in the loop with the proposed override control system in Fig. 

4: a) Set-points ro(t) and rp(t) (dashed), yo(t) and yp(t) (solid), and desired limit 

for yo(t) (dotted); b) control w(t). A step change of control is activated at 

t=600 s and deactivated at t=1000 s.  

V. CONCLUSIONS 

Advances in PID like control algorithms are still of great 

importance, since, as demonstrated in [5] and confirmed 

recently in [6], PID controller still predominates on the 

regulatory control level. The proposed override controller 

offers an effective mechanism to deal with constraints in 

actuator and constraints on the process outputs at the 

regulatory control level. Tuning of this override controller is 

defined by the proposed tuning of the filter Fr(s), taking into 

account that tuning procedures for PID and DTC-PID 

controllers are defined in the available literature. 

Set-point filters are mostly applied to avoid abrupt 

changes of controlled and control variables. However, there 

are examples when a fast reaction on the set-point obtained 

from higher control levels is required and constraints on 

controlled and control variables allow such implementation. In 

these cases, a desired set-point following performance can be 

obtained if the procedure proposed to design and tune filter 

Fr(s) is applied to define set-point filters for controllers on the 

regulatory control level.  
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b) 

Figure 9. Responses of the laboratory thermal plant in the loop with the 

proposed override controller. At t=300 s the set-point rp(t) is changed from 45 
0C to 50 0C: a) Set-points ro(t) and rp(t) (dashed), yo(t) and yp(t) (solid), and 

desired limit for yo(t) (dotted); b) control w(t). The desired override limit is not 

exceeded in the presence of unmeasurable disturbances. 

Finally, in cascade control systems, a limiter is frequently 

applied on the inner loop set-point to keep the secondary 

output below the safety limit. In this case, the procedure 

proposed to design and tune filter Fr(s) can be directly applied 

to avoid the overshoot. This is important to avoid action of 

safety devices, very costly to plant operation. 
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