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Abstract – This paper addresses the problem of designing 

complex controllers for unstable industrial processes with 

transport delay under constraints on robustness and 

performance. The solution to the control design problem is 

obtained in a non-rational form which is rationalized by using 

various methods. The paper also presents a comparative analysis 

of different approximation techniques. By means of numerical 

simulations it has been shown that the proposed methods lead to 

adequate performance and robustness indices. 

Keywords – Rational approximations, Complex controller, 

Robustness, Frequency domain. 

I. INTRODUCTION 

The paper considers the problem of designing complex 
controllers of unstable industrial processes including transport 
delays, observing the restrictions on performance and 
robustness.  When designing complex controllers for unstable 
processes with transport delays, a time-delay may also appear 
within the transfer function of the controller C(s). Thus, after 
the design phase, the controller transfer function is not rational 
and one often encounters internal instability. This internal 
instability in the controller appears as one or more unstable 
dipoles, i.e. pairs of poles and zeros at the same points at the 
right half-plane of the s-plane. Elimination of the intrnal 
instability by means of suitable rational approximations of the 
controller transfer function is an intrinsic step in solving the 
control problem under consideration, and thus represents a key 
motivator for the present paper. Several methods of rational 
approximation of C(s) are considered in the present paper. 

It is well known that nearly 94% of feedbacks in industry is 
realized by PI/PID controllers [1], while this percentage is over 
97% in petrochemical industry [2, 3]. Owing to this high 
significance of PI/PID, the efficient and simple procedures for 
tuning of parameters of industrial controllers have been 
developed [4, 5], as well as the optimization procedures [6-19] 
for designing PI/PID with minimum IAE, observing the 
restrictions on robustness, which meets the criterion presented 
in [22]. 

In addition to  the previously mentioned methods, there are 
methods for designing PID controllers derived from IMC 
controller [23-25]. For IMC method of designing controllers 
there is one adjustable parameter λ which, for a narrow class of 
processes, directly influences the time constant of the closed 

loop system. Response to a Heaviside disturbance of the 
process controlled by a controller obtained by IMC method is 
dependent on the dominant dynamics of the process. E.g. if the 
process has dominant oscillatory dynamics, responces to any 
disturbance will be oscillatory.  

 The problem of control of complex processes (multiple 
instabilities, multiple astatisms, dominant time delay) can not 
be solved adequately by applying PID controller, the basic 
reason for developing methods of designing complex 
controllers. For the purpose of  accomplishing adequate indices 
of robustness and performance for a wide class of stable and 
unstable processes new methods [26-29] have been developed 
for determination of complex controllers based on modified 
IMC structure. However, the rules of design of complex 
controllers by applying these methods have not been defined 
for the general form of process transfer function Gp(s), but they 
are defined for specific classes of processes Gp(s) [26-29]. 
Controller C(s) and its rational approximation defined in [31] is 
designed for the general form of the process  transfer function 
Gp(s)=H(s)exp(-τs)/Q(s) under restrictions on robustness and 
sensitivity to measurment noise.      

Adjustable parameters of a complex controller C(s) are time 
constant λ and factor of relative damping ζ of dominant poles 
of the process in closed loop with controller C(s), as in [6].   
Adjusting of parameter ζ allows achieving compromise 
between indices of robustness and performance, which is not 
possible for complex controllers designed by IMC [23-25] or 
by modified IMC [26-29]. 

Through a series of simulations of a wide class of industrial 
processes a comparison of different methods of rational 
approximation of C(s) in order to achieve an adequate index 
performance/robustness and internal stability of the controller 
has been obtained. 

II. COMPARATIVE ANALYSIS OF SEVERAL METHODS OF 

RATIONAL APPROXIMATION OF INTERNALLY UNSTABLE 

CONTROLLERS 

The control structure with C(s) controller is presented in 
Fig. 1. Gff(s) describes the feed forward from the set point ysp to 
control signal u and will not be considered here. For a wide 
class of transfer functions of industrial processes  is 

p
( ) ( ) / ( )s

G s H s e Q s
τ−= , where Q(s) and H(s) are polynomials 
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Figure 1.  Control structure with controller C(s) 

of the order deg ( ) deg ( ) 0Q s n H s= ≥ = and H(0)≠0. 
Complementary sensitivity function of the  controlled process 
Gp(s) of Fig. 1 is given by  relation 

p
( ) ( ) /(1 ( ))T s L s L s= + [32], 

the function of feedback transfer being of the form 

p
( ) ( ) ( )L s C s G s= . Let  the desired complementary sensitivity 

function T(s) is given by 

 
p

( )
( )

( )

s

N s e
T T s

P s

τ−

= = , (1) 

where:
1

( ) 1
n

j

j

j

N s sη
=

= +∑ , 2 2( ) ( 2 1)nP s s sλ ζλ= + + , 

(1)Oζ ∈ , n∈�  and adjustable parameteris 0λ > , 

j
η ∈� , 1,j n= , determined on the basis of desired 

peerformance of the closed loop system. From relation (1) 
controller C(s) for process transfer function Gp(s) for maximum 
attenuation of disturbance d or n is defined as 

 
p

1 ( ) 1 ( ) ( )
( )

( ) 1 ( ) ( ) ( )

T s N s Q s
C s

G s T s H s F s
= =

−
, (2) 

where ( ) ( ) ( )sF s P s e N sτ−= − , [30]. 

In general, parameters 
1
,

n
η η  are determined to achieve 

cancelling of poles of process Gp(s) and zeros of function F(s), 
[29], where for unstable processes an internal instability arises 
in complex controller (2). 

Free parameters of complex controller (2) are time constant 
0λ >  and factor of relative damping 0ζ >  of the closed loop 

system, as in [6,30]. Damping factor introduced in the complex 
controller design plays a significant role in accomplishing a 
compromise between the performance and robustness indeces. 
It should be mentioned that parameter ζ  affects sensitivity to 
the measurement noise at high frequencies Mn, 

  
n

p

(i )
lim

1 (i ) (i )

C
M

C Gω

ω
ω ω→∞

=
+

, (3) 

In order to accomplish a compromise between the desired 
performance IAE and Ms= max

ω
|1/(1+L(iω))|, time constant λ 

should fullfil condition 

 
p s

,
max 1/(1 (i ) (i ))C G M

ω λ
ω ω+ = . (4) 

Given ζ and Ms (4), time constant λ  is determined by 
solving two nonlinear algebraic equations 

 
2

2

p s1 ( ) ( ) 1/ 0C i G i Mω ω+ − = , (5) 

 
2

p(1 (i ) (i ) ) / 0C Gω ω ω∂ + ∂ = , (6) 

as in [6, 30]. The initial choice of parameter ζ should be ζ=1 
and parameter λ from the vicinity of the estimated transport 
delay. By determining time constant λ for different values of 
parameter ζ, one achieves compromise between values  IAE, 
Mn, and Mp=max

ω
| L(iω)/(1+L(iω))|, under condition that in the 

case of an unstable process Gp(s) the unstable dipole in 
controller C(s) is removed. 

      In order to remove the unstable dipole, if it exists in the 
controller, several methods found in the literature reduce to 
application of  Padé approximation. 

A. Padé  approximation of controller C(s)  

Padé approximation is one od the most frequent rational 
approximations met in the control systems and wider. It can be 
calculated as follows [26,31] 

 0LZG

/ 1

0

ˆ( ) ( )

N j

jj

N N N i

ii

d s

C s C s

s c s

=
−

=

≈ =
∑

∑
, (7) 

where N is the user-specified controller order to achieve the 
desirable performance specification for the load disturbance 
rejection, and 

i
c and 

j
d are determined by the following two 

linear matrix equations. 
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where ( ) (0) / !, 1,2 1i

i
b f i i N= = − are the Maclaurin coefficients 

of ( ) ( )f s sC s=  and 
0
c should be taken as 

0

1, if 0

1,if 0

i

i

c
c

c

≥⎧
= ⎨− <⎩

. 

In this way, under certain conditions on parameters λ, ζ, and N, 
the internal instability of controller C(s) can be removed. 
However, the obtained controller LZG

/
ˆ ( )
N N

C s is not always an 
adequate approximation of C(s) thus index 
robustness/performace could be impaired. For this reason in 
[29, 30] other methods of rational approximation are met.  

The method of rational approximation of C(s) applied in 
[29] in essence also makes use of Padé approximation in the 
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following way. The obtained controller C(s) from (2) is first 
decomposed in the form 

 ( ) ( ) ( )
( )

( ) ( ) ( )
1

( )

s

N s Q s Q s
C s

H s P s N s e

P s

τ

− +

−
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠

, (10) 

where: ( )Q s+  and ( )Q s− are polynomials whose roots represent 
poles of  process Gp(s) in the right and left half planes of the s-
plane respectively. Then, Padé approximation is applied only to 
a part of the preceeding expresion 

( )
( ) ( ) / 1

( )

s

N s e
D s Q s

P s

τ−
+ ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

, taking care that the obtained 

controller is causal, ie. 

 LG

/

( ) ( )ˆ ˆ( ) ( )
( ) ( )

N M

N s Q s
C s D s

H s P s

−

= , 0

/

0

ˆ ( )

N j

jj

N M M i

ii

b s

D s

s a s

=

=

=
∑

∑
. (11) 

Similarly in [30], in order to avoid calculation of Padé 
approximation of complex functions, the use is made of the 
known Padé approximation of function s

e
τ−  in controller C(s) 

followed by factorization and elimination of unstable dipoles to 
remove internal instability of the controller. Since Padé 
approximation of function s

e
τ− in the vicinity of 0s =  is given 

in the form 

 
0

0

( )! !
( )

( ) ( )! !( )!

( )! !( )
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( )! !( )!
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k
s M

N k
N

k

M N k M
s

B s M N k M k
e

M N k NA s
s

M N k N k

τ
τ

τ

=
−

=

+ − −
+ −≈ = + −
+ −

∑

∑
, (12) 

and on the basis of relation (2) it follows 

 ŠTG
/

factorization and elimination of unstable dipoles

( ) ( ) ( )1ˆ ( )
( ) ( ( ) ( ) ( ) ( ))

N

L L

N M

A s N s Q s
C s

H s P s A s N s B s

⎛ ⎞
= ⎜ ⎟−⎝ ⎠
���������������

, (13) 

therefore in the obtained controller ŠTG

/
ˆ ( )
L L

C s  there are no 
unstabile dipoles.  

B. Simulation analysis 

Comparison of the proposed methods for removal of 
internal instability in controller C(s), (2), will be analyzed 
through four representative typical dynamic characteristics of 
unstable industrial processes including transport delay: 

 
2

p1

4

4 1

s

e
G

s

−

=
−

,               
1.2

p2
( 1)(0.5 1)

s

e
G

s s

−

=
− +

,   

  
0.2

p3
( 1)

s

e
G

s s

−

=
−

,               
0.3

p4

2

(3 1)( 1)

s

e
G

s s

−

=
− −

.  

The obtained controllers are: 
Process Gp1.  

2
ŠTG

4/ 4 2

2.0488( 3.6778 6.4594)( 2.3222)( 0.0711)ˆ ( )
( 0.3444 6.8416)( 8.7177)

s s s s
C s

s s s

+ + + +=
+ + +

, 
2

LZG

4/ 4 2

28.7970( 2.7760)( 0.0711)( 4.5789 9.0689)ˆ ( )
( 220.299)( 0.1638 6.3867)

s s s s
C s

s s s s

+ + + +=
+ + +

 

2
LG

6/ 6 2 2

9.6209( 2.6822)( 0.3818)( 0.3815)( 4.3998 8.6936)( 0.0711)ˆ ( )
( 0.3817) ( 68.06)( 0.1873 6.3972)

s s s s s s
C s

s s s s s

+ + + + + +=
+ + + +

 

Process Gp2.  
2

ŠTG

4/ 4 2

6.4835( 0.0154)( 5 8.3333)( 2)ˆ ( )
( 0.0370 12.6343)( 7.7176)

s s s s
C s

s s s s

+ + + +=
+ + +

,  
2

LZG

4/ 4 2

92.2837( 1.9890)( 0.0155)( 7.2907 17.0647)ˆ ( )
( 279.8)( 0.4117 10.099)

s s s s
C s

s s s s

+ + + +=
+ − +

 

2 2

LG

7 / 7 3 2

242.8705( 1.1839 0.3505)( 7.4912 17.5525)( 0.5807)( 2)( 0.0155)ˆ ( )
( 0.5882) ( 760.46719)( 0.4209 10.1131)

s s s s s s s
C s

s s s s s

+ + + + + + +=
+ + − +

 

Process Gp3.  
2

ŠTG

3/3 2

31.1548( 10)( 0.5542 0.2037)ˆ ( )
( 17.3492 127.1133)

s s s
C s

s s s

+ + +=
+ +

, 
2

LZG

2/ 2

0.19065(2911.0054 2309.2295 1108.7320)ˆ ( )
( 190.6494)

s s
C s

s s

+ +=
+

, LG

/

ˆ ( )
N N

C s  none 

Process Gp4.  

2 2
ŠTG

4/ 4 2

100.7255( 0.4604 0.2583)( 20 133.3333)ˆ ( )
( 23.0066)( 6.4890 144.1208)

s s s s
C s

s s s s

+ + + +=
+ + +

, 
2

LZG

3/3 2

54.8760( 0.4762 0.2695)( 12.8684)ˆ ( )
( 2.4488 172.6147)

s s s
C s

s s s

+ + +=
+ +

 

2 2 2
LG

7 / 7 4 2

49.2861( 0.4604 0.2583)( 14.6555)( 4.4854 5.170)( 3.6172 3.2987)ˆ ( )
( 2.0408) ( 1.9056 175.3277)

s s s s s s s
C s

s s s s

+ + + + + + +=
+ + +

 

 
On the basis of Table 1 and transfer functions of the 

obtained controllers, it can be concluded that controllers 
LGˆ ( )C s  are of higher orders compared to those obtained by 

other methods, all having the same Ms. In addition, in the 
third example by applying LG method it was not possible to 

determine the controller for the given Ms. Controllers of type 
LGˆ ( )C s  and LZGˆ ( )C s obtained for the second process contain 

double unstable pole, but in control systems it is not 
recommendable that the  controller itself is unstable since 
this impairs robustness of the control loop. Controller of type 
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ŠTGˆ ( )C s gives better results for processes having dominant 
transport delays compared to other two controller types. In 
design of the controller it is possible to include parameter ζ, 
as in [30], in order to achieve better indices of peformance 
and robustness.  

TABLE I.  THE RESULTS OBTAINED BY THE PROPOSED METHODS OF 

RATIONAL APPROXIMATION OF CONTROLLER C(S) FOR THE SAME VALUE OF 

MS AND ζ=1. 

Process Method λ  Mn IAE Ms Mp 

 ŠTG

4/ 4
ˆ ( )C s  2.62 2.05 27.3 2.9 2.7 

Gp1(s) LZG

4/ 4
ˆ ( )C s  2.62 29.0 27.3 2.9 2.7 

 LG

6/ 6

ˆ ( )C s  
2.62 9.62 27.3 2.9 2.7 

 ŠTG

4/ 4
ˆ ( )C s  1.71 6.48 58.1 14 14.6 

Gp2(s) LZG

4/ 4
ˆ ( )C s  

1.71 92.3 58.1 14 14.6 

 LG

7/ 7

ˆ ( )C s  1.71 243 58.1 14 14.6 

 ŠTG

3/ 3
ˆ ( )C s  0.63 31.1 2.00 2.8 3 

Gp3(s) LZG

2/ 2
ˆ ( )C s  0.47 555 0.90 2.8 3 

 LGˆ ( )C s  - - - - - 

 ŠTG

4/ 4
ˆ ( )C s  0.49 100 0.95 3.8 3.9 

Gp4(s) LZG

3/ 3
ˆ ( )C s  0.48 54.8 0.91 3.8 3.9 

 LG

7/ 7

ˆ ( )C s  0.49 49.3 0.96 3.8 3.9 

III. CONCLUSIONS 

Design of controllers of unstable industrial processes 
including transport delays with restrictions on performance 
and robustness is of exceptional significance from the point 
of view of industry. The problem of control of complex 
processes (multiple instabilties, multiple astatisms, dominant 
time delay) can not be adequatly solved by using PID 
controllers, which is the basic reason for development of the 
methods for design of complex controllers. The conditions 
for a complex controller are that it is stable, of relativly lower 
order, and of adequate structure for practical realization. In 
this work three methods of rational approximation in the 
design of complex controllers have ben analyzed. The 
presented comparative analysis and simulation gave the 
expected results. 
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